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 Model POWER GAS HEPMASS MINIBOONE BSDS300

 Real NVP 0.17 8.33 -18.71 -13.55 153.28

 Glow 0.17 8.15 -18.92 -11.35 155.07

 MADE 0.40 8.47 -15.15 -12.27 153.71

 MAF 0.30 9.59 -17.39 -11.68 156.36

 FFJORD 0.46 8.59 -14.92 -10.43 157.40

 TAN 0.60 12.06 -13.78 -11.01 159.80

 NAF-DDSF 0.62 11.96 -15.09 -8.86 157.43

 Ours 0.61 12.06 -14.71 -8.95 157.36
 Param. Gain 2.29x 2.60x 17.94x 43.97x 8.24x
Table 1. Density estimation on 5 benchmark dataset. B-NAF has comparable performance 

with NAF and order of magnitude fewer parameters.
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Figure 1. Main differences between NAF (Huang et al., 2018) and our B-NAF.

(a) NAF: each c(i) is a neural network that 
predicts pseudo-parameters for t(i), which 
in turns processes x(i).

(b) Our B-NAF: we do not use conditioner 
networks, instead we learn the flow network 
directly. Some weights are strictly positive (solid 
lines), others have no constraints (dashed lines).
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A normalising flows (NFs) maps two density functions via a 
differentiable bijection (  ):

Usually, a density is decomposed in an autoregressive way:

The NF is decomposed in:

Trivially invertible transformations 
may not be expressive enough

For each affine layer, the weight matrix    is a lower-triangular 
block matrix with strictly positive diagonal blocks:
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to have a tractable Jacobian!

conditionerinvertible transformer

f

Neural autoregressive flow (NAF) by Huang et al. (2018): replaces 
hand-crafted transformers with invertible neural networks! 

The Jacobian is computed with backpropagation:

•Neural autoregressive flow (NAF) by Huang et al. (2018) 
•PRO: universal approximator of density functions 
•CONS: hyper-network      parameter num. grows quadratically 

•We propose Block Neural Autoregressive Flow (B-NAF) 
•a more compact universal approximator of density functions, 
directly modelled as a single feed-forward network 

•comparable in performance while using orders of magnitude 
fewer parameters

ADVANTAGES:  
NAFs are universal approximators of density functions 

DRAWBACKS: 
NAFs are hyper-networks and therefore the number of parameters 
scale quadratically!  

SOLUTION:  
our model a universal approximator of density functions with 
single feed-forward network!

• we model each   directly as an NN without a conditioner 
• we employ affine transformations with positive weights to 

process    ensuring strict monotonicity and thus invertibility 

• Stable: the det-Jacobian can  
be computed in the log-domain  

• Efficient: fewer parameters 
than NAF and easy-to-compute 
Jacobian

• Universal approximator of 
densities: we can 
arbitrarily increase the 
hidden layer dimension 

• Autoregressive: lower 
triangular Jacobian
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Invertibility depends 
on the transformers

NFs are useful for learning densities: wide used in density 
estimation and variational inference

Code available at https://github.com/nicola-decao/BNAF

Comparison with Glow 
(Kingma and Dhariwal, 2018) 

on density estimation

Comparison with Planar Flows 
(Rezendeand Mohamed, 2015) 

on density matching

discontinuities and  
low-destiny regions are 

better modelled by B-NAF

Data Glow Ours

Target PF (L=32) Ours (L=2)

2 layers of B-NAF  
work better than 

32 layers of planar flows

Faster training!

More shallow!
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