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Key Ideas

Introduction

query: country Thorildsplan 
candidates: {Denmark, Finland, Sweden, Italy, ...} 
answer: Sweden 

Thorildsplan is a small park in Kristineberg in  
Stockholm, named in 1925 after the writer [..]

Stockholm is the capital of Sweden  
and the most populous city in [..]

Figure 1. A sample from WikiHop.

Data:  
• Set of <documents, question> pairs 
• Automatically constructed from a text corpus (Wikipedia) and a  

knowledge base (Wikidata) 
• Questions are constructed to encourage reasoning across documents 

Task:  
• multiple choice from a set of candidate answers (  ) 

Approach: 
1. explicitly build a graph of useful mentions from supporting documents 

(  ) used for reasoning steps 
2. graph convolutional networks (GCN) are applied to these graphs 

allowing for information propagation 
3. candidates are scored through an MLP conditioned on a question 

representation and a pooling operation

C

S

• We do reading comprehension on multiple documents 
• We frame it as an inference problem on a graph: 

• mentions of entities are nodes 
• edges encode relations between different mentions 

• Graph convolutional networks performs multi-step reasoning 
• Our method is scalable and compact, and it achieves state-of-the-art 

results on WikiHop (Welbl et al., 2018)

Building the Graph

Nodes are mentions from all supporting documents and are connected with 
different edge-types/relations: 
• Mentions within the same document (DOC-BASED) 
• Exact matches across documents (MATCH) 
• Coreferences — using an external system (COREF) 
• The complement graph (COMPLEMENT)
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Figure 2. Two supporting documents.
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Node embeddings are initialised using ELMo (Peters et al., 2018), a pre-
trained language model, and a question representation. 

NOTE: no further readers are applied to the text!

Entity Relational Graph Convolutional Network 
Gated version of relational-GCNs (Schlichtkrull et al., 2018).

attention gate
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Candidates scoring 
We use the final node embeddings (     ) and the question representation (  ) 
to predict a distribution over candidates.

The update vector (  ) of a node is a 
function of its neighbours (  ) conditioned 
on the relations between them
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A max-pooling operation 
among the mentions (    ) 
of the same candidate (  )
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Results
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Figure 1. Accuracy on WikiHop closed test set.

Entity-GCN is at least 5 times faster to train than BiDAF 

NOTE: ensemble models add negligible overhead since embeddings  
are computed only once!

 Model

 Full (ensemble) 68.5

 Full (single) 65.1±0.11

 GloVe w/o R-GCN 51.2

 GloVe w/ R-GCN 59.2

 No relation type 62.7

 No DOC-BASED 62.9

 No MATCH 64.3

 No COREF 64.8

 No COMPLEMENT 64.1

 Induced edges 61.5

Ablation study

Relations are 
important

DOC-BASED 
relations are 

the most 
significant

Learning to 
predict edges 
is hard and an 
open problemFigure 2. Accuracy on WikiHop 

validation set.

R-GCN is useful

Processing the Graph


