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The drug design processes

Which problem do we want to solve?

Drug design is the process of finding new drugs
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The first step is Drug Discovery
screening large compound libraries
designing of new unknown molecules (de novo)
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Our contributions

How others proposed to study the problem?

Generating SMILES representations [Gómez-Bombarelli et al., 2016]

Generating labeled graphs [Simonovsky and Komodakis, 2018]

How do we study the problem?

Using labeled graphs

Likelihood-based vs. likelihood-free methods (VAE vs. GAN)

Biasing the process using reinforcement learning
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Background
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Variational Auto-Encoders

Likelihood-based generative process [Kingma and Welling, 2013]

[Hafner, 2018]
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Generative Adversarial Networks

Likelihood-free generative process [Goodfellow et al., 2014]

z ∼ pz(z)

x ∼ pdata(x)

Gθ x̃

Dφ [0, 1]

Figure: Schema of GAN architecture.
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Models
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Vectorial representation of graphs

(a) (b) (c)

A

X

Figure: The molecule (a) is represented as an labeled graph (b) which can be
encoded into an adjacency tensor A and an annotation matrix X.
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Molecular graph VAE
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The reconstruction loss is a sum of two categorical cross entropy losses.
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Molecular graph GAN

From generator to discriminator with differentiable sampling.
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Molecular graph GAN with RL

Molecular graph
Generator Discriminator

Reward 
network

z ~ p(z)

0/1

0/1

x ~ pdata(x)

Figure: Schema of MolGAN from our previous work [De Cao and Kipf, 2018].
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Experiments
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Experiments

Which questions we would like to answer?

likelihood-based vs. likelihood-free (VAEs vs. GANs)

the effect of RL towards chemical objectives

Is generating a graph better than a SMILES representation?
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VAE advantages and disadvantages

VAEs train an encoder!

VAE objective: reconstruction loss and divergence

RL objective: sampled molecules should maximize a score

There is a mismatch between these two!
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Trade-off between WGAN and RL

Method validity uniqueness QED

λ = 0.0 (full RL) 100.00 3.16 0.61
λ = 0.125 100.00 7.21 0.61
λ = 0.25 99.80 10.16 0.61
λ = 0.375 99.90 11.11 0.60
λ = 0.5 99.40 31.29 0.56
λ = 0.625 97.20 49.69 0.51
λ = 0.75 93.70 64.35 0.51
λ = 0.875 89.40 69.69 0.50
λ = 1.0 (no RL) 90.10 63.91 0.50

Table: WGAN and RL objectives trade-off.
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Synthetic accessibility score (SAS) distributions I
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Figure: WGAN matches the data distribution of the synthetic accessibility score.
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Synthetic accessibility score (SAS) distributions II
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Figure: WGAN in combination with RL push the distribution of the synthetic
accessibility score (SAS) to be as low as possible.
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Comparison with VAE based methods

Method validity uniqueness novelty

CharacterVAE 10.3 67.5 90.0
GrammarVAE 60.2 9.3 80.9
GraphVAE 55.7 76.0 61.6
GraphVAE/imp 56.2 42.0 75.8
GraphVAE NoGM 81.0 24.1 61.0

Our VAE 61.5 97.6 69.1
Our VAE with RL 89.1 11.1 92.3
Our WGAN 89.2 26.5 55.7
Our WGAN with RL 99.6 14.5 97.7

Table: Baseline results from GraphVAE [Simonovsky and Komodakis, 2018].
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Comparison with a GAN based method

Method validity SAS time

ORGAN 96.5 0.83 8.7
OR(W)GAN 97.6 0.75 9.6
Naive RL 97.7 0.83 10.6

Our VAE with RL 89.6 0.71 0.09
Our VAE with RL (full QM9) 94.0 0.86 2.2
Our WGAN with RL 100.0 0.70 0.15
Our WGAN with RL (full QM9) 99.8 0.92 3.3

Table: Baseline results from ORGAN [Guimaraes et al., 2017].
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Conclusion and future work
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Conclusion

Considering experimental, we identify these further contributions:

recurrent SMILES generation is more computational expensive

likelihood-based models are difficult to be optimized with RL

... but keeping in mind and these limitations:

we experimented using compounds of at most 9 atoms

models are susceptible to mode collapse
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Future work

We identify four principal directions for future work:

address mode collapse [Srivastava et al., 2017]

combine variational approaches with adversarial learning to benefit
from both approaches [Mescheder et al., 2017, Rosca et al., 2017]

train our models on ChEMBL [Gaulton et al., 2011]

more realistic reward functions [Li et al., 2018]
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