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Abstract

Deep generative models are a rapidly advancing area of research in
machine learning. They recently have been proven to effectively
deal with continuous Euclidean data such as sounds, images, and
videos. However, how to generate non-Euclidean and structured
abstract data, such as graphs, is still an open question. In this
work, we propose and investigate how to approach this problem
through the use of three popular techniques: Variational Auto-
Encoders, Generative Adversarial Networks, and Reinforcement
Learning. We show what the main advantages and drawbacks of
each of these techniques are. In particular, we explore this prob-
lem within the setting of de novo drug discovery, i.e., generation
of chemical drugs for finding new medications. We propose tech-
niques to overcome some of the disadvantages of each method and
to generate high-quality molecule structures as labeled graphs.
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Chapter 1

Overview

Drug design is the process of finding new drugs based on the knowledge of
a biological system. In particular, drug discovery is one of its earliest steps
which consists in selecting a number of candidates which will be further
considered for experimentation. Computer systems frequently guide modern
design processes. Usually, two direct methods select potential drug candi-
dates: screening large compound libraries searching for existing molecules
with some desired properties (Merz Jr et al., 2010), and the designing of
new unknown ones. The latter is commonly referred as de novo drug discov-
ery (Klebe, 2000). With this work, we mainly aim to explore modern deep
learning generative models such as variational auto-encoders (Kingma and
Welling, 2013) and generative adversarial networks (Goodfellow et al., 2014)
as novel tools for generating new drug candidates. Additionally, we study
the use of reinforcement learning as a method to bias the generative process
towards having some desirable properties (e.g., molecules with high solubility
in water).

1.1 Motivation

The drug design process is well-known to be expensive, both in terms of
monetary and time resources. Even small improvements at any of its stages
could save much human effort. In Figure 1.1 we give a rough intuition of the
time scale that is required from the earliest stage of research to consumer
sales to have a final medication ready for the market. We also approximately
indicate four principal phases of drug design, and how many compounds are
considered in each of them. Notice that on average, it requires 12-15 years of
research and experimentation to have a single drug ready to be used. Drug
discovery is the first step in this long process, and it aims to result in a set of

3
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10k 100 5

Drug
Discovery

Pre-clinical
Clinical trials 

Approved drug 
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1

Review 

 ~ 1 year   

Figure 1.1: The drug design process. We show approximately how many
compounds are considered in each phase, and how many years are expected
to be spent on each of them1.

≈10k compounds to be considered as potential candidates in future stages.
There are two major approaches to drug discovery, and they are com-

monly identified as ligand-based and structure-based (Merz Jr et al., 2010).
Ligand-based drug discovery (or indirect drug discovery) is based on the
knowledge of other molecules that bind to the biological target of interest.
The structure-based drug discovery (or direct drug discovery) is based on
virtual screening (i.e., searching large databases of molecules to find those
fitting) or designing new unknown ligands (referred as de novo). These ap-
proaches are usually applied in combination resulting in a large number of
candidates ready for pre-clinical tests.

When de novo methods are used, researchers first study the properties of
the compounds they are looking for. Usually, they manually design part of
the molecule since it has to match a known target. Subsequently, computer-
aided systems identify/generate new molecules that can potentially interact
with such target (Borhani and Shaw, 2012). These systems are usually rule-
based, and they use knowledge from biology and chemistry developed in years
of human-guided drug design. Although these systems are well-established,
modern advances in machine learning, especially in generative models, proved
to be useful in many areas, including chemistry and pharmaceutical sciences.

Generative models approach the problem of creating new data. Recently,
they have been proven to effectively deal with continuous Euclidean data
such as sounds, images, and videos (Kingma and Welling, 2013; van den

1Data sourced from fragmented information in http://www.cancerresearchuk.org

http://www.cancerresearchuk.org
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Oord et al., 2015; Radford et al., 2016; Vondrick et al., 2016). Unfortu-
nately, molecular structures are not so simple to deal with. Molecules are
complex structures that can be represented in multiples ways. Two popular
approaches are the use of SMILES (simplified molecular-input line-entry sys-
tem) strings or labeled graphs. The SMILES is a language-based molecular
representation that can encode every compound in a string of characters.
A compound can also be represented with a labeled graph where nodes are
atoms and edges are bonds. The labels indicate which type of atoms and
which type of bonds. In general, the generation of non-Euclidean and struc-
tured abstract data, such as text or graphs, is considered to be hard, and
still an unsolved problem.

Recent works (Gómez-Bombarelli et al., 2016; Kusner et al., 2017; Dai
et al., 2018; Guimaraes et al., 2017) have explored the direction of genera-
tive models capable of dealing with structured languages. In particular, these
work framed this problem as a generation of SMILES strings. However, mod-
els that use SMILES have to face the issue of generating valid strings that
correspond to plausible molecules. Generating small molecules is easy, but
these methods may not scale well in real-world industrial applications. In-
deed, other approaches (Simonovsky and Komodakis, 2018; You et al., 2018;
Jin et al., 2018; Samanta et al., 2018) explored the promising direction of
generating graph structures that represent compounds. These approaches
result in much higher valid outputs. On the other hand, framing the prob-
lem on graphs might present other issues such as graph isomorphism under
permutation of the nodes (e.g., when evaluating the likelihood of a graph in
probabilistic models). Notice that any serialization of a graph (also using
SMILES) will suffer from this problem.

In this work, motivated by the discussion above, we study how to ap-
proach de novo drug design using generative models for labeled graphs.

1.2 Contributions

We identify two main contributions in this thesis. The first contribution is
presented in Sections 3.2, 3.3, and 3.4 where we propose a general frame-
work (not only for molecules) for encoding and decoding discretely labeled
graphs. In particular, graphs encoding is permutation invariant with respect
to nodes. We also propose multiple decoding function variations. Each of
them uses a graph-level vector that represents a graph as a whole (i.e., it is
not decomposed in a set of nodes). Additionally, we show how we use dis-
cretely labeled graphs to represent molecules. We use these building blocks to
construct both variational auto-encoder and generative adversarial network
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Molecular graph
Generator Discriminator

Reward 
network

z ~ p(z)

0/1

0/1

x ~ pdata(x)

Figure 1.2: Schema of MolGAN from our previous preliminary work (De Cao
and Kipf, 2018). In a GAN setting, a vector sampled from a prior is fed to
the generator which outputs a graph representation of a molecule. The dis-
criminator classifies whether the molecular graph comes from the generator
or the dataset. In addition, a reinforcement learning component bias the pro-
cess. The reward network estimates the reward (i.e., the chemical properties
of a particular molecule provided by an external software) providing a policy
gradient to the generator.

for generating such structures.
The second main contribution is presented in Section 3.5 where we show

how to use reinforcement learning (RL) in combination with a graph gen-
erative process. In particular, we employed a deterministic policy gradient
to overcome the high-dimensional action space complexity. Through exten-
sive experimentation, we show the ability of reinforcement learning to bias
the generative process towards desirable properties. Reinforcement learning
provides additional feedback to the generation resulting in an advantageous
convergence. Indeed, the generation of a discrete structure imposes a serious
learning challenge due to its indirect differentiability (i.e., generally, we can-
not compute the exact gradient of a discrete output by a neural network).
Moreover, in the space of graphs, only a tiny amount are valid molecules.
With experimental results, we show the benefits, but also the limitations,
of combining reinforcement learning with both variational auto-encoder and
generative adversarial network for graphs.

In a previous preliminary work (De Cao and Kipf, 2018), we showed
a limited study on the combination between WGANs and RL. In Figure
1.2, we show the proposed model with a brief introduction. In this thesis,
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we aim in exploring more advanced techniques (e.g., the use of variational
auto-encoders or feature matching for WGANs) as well as presenting a more
extensive introduction to all employed methods. We will also present more
model variations, experiments, evaluations, and discussions.

1.3 Organization
This thesis is organized as follows: we first provide some background knowl-
edge in Chapter 2 to introduce the reader to the main concepts needed to
understand our work. These include variational auto-encoders, generative ad-
versarial networks, reinforcement learning, and graph convolution networks.

Chapter 3 exposes several methods and variations to address de novo drug
design. We propose the use of both graph-based variational and adversarial
models in combination with reinforcement learning. We show which issues we
want to address, how we build such models, and how we intend to evaluate
them. In Chapter 4 we briefly list several related works to ours as well as
presenting relevant literature to the methods we use.

Continuing to Chapter 5, we provide a series of experiments to evaluate
our methods. We discuss results obtained by these experiments as well as
present an extensive discussion. Additionally, we show how our work com-
pares against recent state-of-the-art models.

Finally, in Chapter 6, we draw final considerations of this work, and
we propose possible future directions in this field of research. We report
additional derivations and plots in the Appendix.
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Chapter 2

Background

This chapter aims to give a brief introduction to the main concepts that are
used throughout this thesis. However, we assume that the reader is familiar
with machine learning, probability theory, and neural networks. We first
present two core generative models namely the variational auto-encoder and
generative adversarial network in Sections 2.1 and 2.2 respectively. Then,
we introduce the learning paradigm of reinforcement learning in Section 2.3,
and graph convolution network, an essential deep-learning framework used
to deal with graphs, in Section 2.4. Definitions and notations of this chapter
are fundamental to the understanding of later chapters.

2.1 Variational Auto-Encoders

First introduced by Kingma and Welling (2013), the variational auto-encoder
(VAE) is an unsupervised generative model that allows performing varia-
tional inference using an auto-encoding architecture.

An auto-encoder (AE) is a particular neural network architecture used
for unsupervised learning of efficient representations (Hinton and Salakhut-
dinov, 2006). The objective of an AE is to learn two functions: a function
e, that produces an encoding/representation in an embedded space Z from
a data space X , and a function d, that decodes such representations back to
the original space. AEs are unsupervised learning models since the learning
task is inferring functions, from unlabeled data, that describe hidden struc-
tures/patterns. AEs are typically used for dimensionality reduction since the
size of latent representations is usually smaller than the original data space.

9
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An auto-encoder model can be formalized as follows:

eφ : X → Z
dθ : Z → X

φ∗, θ∗ = arg min
φ,θ

N∑
i=1

L(x(i), x̃(i))
∣∣
x̃(i)=dθ (eφx(i)))

, (2.1)

where eφ and dθ are respectively the encoder and decoder functions param-
eterized by φ and θ, X and Z are the data space and the latent space.
L : X × X → R+ is any loss function that assigns a positive penalty (loss)
to a reconstruction with respect to the original observation (zero loss cor-
responds to perfect reconstruction). Notice that in general a loss function
can be also negative, but a positive loss is more interpretable. X = {x(i)}Ni=1

and X̃ = {x̃(i)}Ni=1 are the dataset and the reconstructed dataset respec-
tively. This general formulation can be instantiated as a fully differentiable
model when both eφ and dθ are implemented as neural networks and then
parameters can be learned and optimized with stochastic gradient descent.

AEs are very effective in dimensionality reduction and anomaly detection
(Hinton and Salakhutdinov, 2006; Sakurada and Yairi, 2014), but their useful-
ness as generative models is limited. Indeed, one may use dθ to generate new
data-points feeding with elements form Z. However, there is no underlying
nor pre-defined distribution over the space Z to sample from. Fortunately,
recently, auto-encoders in combination with variational inference have been
shown to be useful for learning generative models of data.

Variational learning Variational auto-encoder models make use of the
auto-encoder architecture while additionally modeling observed and latent
variables using a probabilistic framework. In addition to an AE, in VAEs,
assumptions concerning the distribution of latent variables are made. This
addition allows VAEs to be used as generative models. Let X be a random
variable that models the observation (data), and Z be a hidden random vari-
able that generates data. The relationship between these two variables can
be represented using the graphical model in Figure 2.1 where θ and φ are
parameters of the distributions of the generative model and the variational
approximation (inference model) respectively. In this setting, the joint prob-
ability distribution pθ(x, z) can be decomposed using pθ(x, z) = pθ(x|z) pθ(z)
such that the latent variables are drawn independently from a prior z ∼ pθ(z)
while data are drawn from a likelihood that is conditioned on latent variables
x ∼ pθ(x|z). Moreover, we can calculate the posterior in order to make in-
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X

Z θφ

N

Figure 2.1: Solid lines indicate the generative model pθ(x, z) = pθ(x|z) pθ(z)
where dashed lines indicate the variational approximation qφ(z|x) of the in-
tractable posterior pθ(z|x).

ference on Z after observing X:

pθ(z|x) =
pθ(x, z)

pθ(x)
=

pθ(x, z)∫
pθ(x, z) dz

. (2.2)

Moreover, in order be able to learn, we assume that both the prior and
the likelihood come from a well-known parametric family of distributions
with almost everywhere differentiable probability density functions. The ob-
jective is then to learn such parameters approximating probability functions
with neural networks and optimizing them via stochastic gradient descent
(SGD). More precisely, we are interested in minimizing the reconstruction
error, similar to the AE, but here it is formulated as maximizing the log-
evidence log pθ(X). The log-evidence is computed over all the observed data
X = {x(i)}Ni=1 to obtain θ∗ = arg maxθ log pθ(X). The log-evidence is decom-
posed into a sum over the marginal probabilities of individual data-points:
log pθ(X) =

∑N
i=1 log pθ(x

(i)). Then we can express the evidence of a single
data-point as:

log pθ(x
(i)) = log

∫
pθ(x

(i), z) dz . (2.3)

Unfortunately, since probability densities are parameterized by neural
networks, marginalizing over the latent variables is generally intractable.
Furthermore, in practice, even with a Monte Carlo estimate, it would be
too slow since it typically involves a sampling loop per data-point which is
expensive for large datasets. One way to overcome this issue is to introduce
an approximation of the intractable true posterior qφ(z|x) ≈ pθ(z|x) and
maximize a lower bound of the log-evidence. This bound (see full derivation
in Appendix B.1) is the evidence lower bound (ELBO):

log pθ(x
(i)) ≥ Eqφ(z|x(i))

[
log pθ(x

(i)|z)
]
−DKL

[
qφ(z|x(i)) ‖ pθ(z)

]
. (2.4)
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where DKL is the Kullback–Leibler divergence (Kullback and Leibler, 1951).
The ELBO is generally easier to compute and much more convenient to
optimize than the true evidence. In practice, in order to have a gradient
estimator, Kingma and Welling (2013) introduced the Stochastic Gradient
Variational Bayes (SGVB) algorithm, and they applied that using Normal
distributions for both prior and posterior. They used a mean-field assumption
in order to make the problem tractable, i.e. a standard multivariate Normal
distribution pθ(z) = N (0, I) as a prior, and a fully-factorized multivariate
Normal distribution qφ(z|x) = N (µ, diag(σ2)) as posterior. SGVB optimizes
the ELBO using a single point estimation to approximate expected values.
A Monte Carlo estimate would lead to less variance but also to an overhead
in computation. Additionally, they introduced the reparameterization trick 1

to sample from the posterior in order to make the ELBO differentiable with
respect to φ. The loss function per data-point to minimize with respect to
both θ and φ with stochastic gradient descent is then:

L(x(i); θ, φ) = − log pθ(x
(i)|z(i))︸ ︷︷ ︸

reconstruction loss

+DKL

[
qφ(z(i)|x(i)) ‖ p(z(i))

]︸ ︷︷ ︸
variational loss

, (2.5)

with z(i) ∼ qφ(z|x(i)).
This loss is very similar to the formalism in Equation 2.1. As a matter of

fact, a VAE can be seen as AE, where eφ = qφ(z|x) and dθ = pθ(x|z), with an
additional loss component that acts regularizing the latent space structure
with respect to a prior distribution. In this way, a VAE does not only learn
efficient encoding and decoding functions but also allows sampling from Z.
Therefore, after training, one can use the encoder eφ : X → Z to obtain
latent representations, the decoder dθ : Z → X to obtain reconstructions,
and dθ(z)

∣∣
z∼p(z) to generate new samples.

2.2 Generative Adversarial Networks

VAEs do not optimize a generative process directly. Indeed, VAEs are trained
using the ELBO which maximize a lower bound of the evidence while aligning
the outputs of the encoder to match a prior distribution. One may desire to
have a model which optimizes some generative objective to learn to generate
samples that resemble data-points form the dataset directly. This kind of
objective should assess the quality of the generative process. VAEs do not
address that since the characteristics of the generation process are assessed

1z ∼ N (µ, diag(σ2)) ≡ z ∼ µ+ σ �N (0, I) where � is element-wise product.
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z ∼ pz(z)

x ∼ pdata(x)

Gθ x̃

Dφ [0, 1]

Figure 2.2: Schema of naïve GAN architecture. Top: z is drawn from the
prior distribution p(z) and fed to the generator function x̃ = Gθ(z). Bottom:
x is drawn from the empirical distribution (dataset). Right: the discriminator
function Dφ is a classifier trained to discriminate real data x (label 1) from
generated data x̃ (label 0).

by the reconstruction loss, which is well-defined, but they do not optimize
the generation of new samples.

Conversely, first introduced by Goodfellow et al. (2014), the generative
adversarial network (GAN) architecture is designed to be a pure generative
model. Differently from a VAE, there is no approximate posterior distribu-
tion q(z|x), and the model directly learns to generate samples. Moreover,
GANs are likelihood-free models since there is no direct computation of the
likelihood. The main idea behind GANs is to have a part of the model, called
discriminator, specifically designed and trained to provide feedback, in form
of a gradient, to the generated samples. In particular, the discriminator
learns to disambiguate real from generated samples allowing optimizing the
generator towards matching the empirical data distribution.

Hence, a GAN consist of two main components: a generative model Gθ

and a discriminative model Dφ. The generator Gθ, parameterized by θ,
learns the data distribution to sample new data-points. The discriminator
Dφ, parameterized by φ, learns to classify whether samples came from the
empirical distribution pdata(x) (dataset) rather than fromGθ to provide credit
assignment in form of a gradient to the generator. Those two models are
implemented as neural networks and trained simultaneously with SGD. The
model is outlined in figure 2.2.

Generator The objective of the generator is to learn a transformation
from a noise vector drawn from a prior distribution pz(z) into a sample x̃
that resembles the data distribution closely enough to fool the discriminator
into classifying generated samples as real samples from the dataset. More
formally, the loss function with respect to Gθ is the negative log-probability
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of generated samples to belong to the empirical distribution:

L(z(i); θ) = − logDφ(Gθ(z
(i))) , (2.6)

where z(i) ∼ pz(z). Popular choices for pz(z) are either an multivariate
Uniform U(−1, 1) or a standard multivariate Normal distribution N (0, I).

Discriminator The purpose of the discriminator is to provide credit as-
signment to generated samples. The discriminator is indeed needed to pro-
vide a gradient to the generator function allowing optimization via SGD.
The objective of the discriminator is to classify samples as generated rather
than real. Its output is the probability of a sample of being drawn from
the dataset. Then, the loss function with respect to Dφ is the sum of two
negative log-probabilities:

L(x(i), x̃(i);φ) = − logDφ(x(i))− log(1−Dφ(x̃(i))) , (2.7)

where x(i) ∼ pdata(x), and x̃ = Gθ(z
(i)) with z(i) ∼ pz(z). Notice that, the

term logDφ(x(i)) indicates the log-probability of a sample drawn from the
empirical distribution to be classified as drawn from it. Conversely, log(1−
Dφ(x̃)) indicates the log-probability of a generated sample to have not been
drawn from the empirical distribution, therefore, to have been generated.

Optimization Since those two model have different objectives, they can
be seen as two players in a minimax game: min

θ
max
φ

V (Gθ, Dφ) where

V (Gθ, Dφ) = Ex∼pdata(x) [logDφ(x)] + Ez∼pz(z) [log(1−Dφ(Gθ(z))] , (2.8)

is the value function. The discriminator tries to maximize V in order to
identify all real and generated samples correctly. The generator tries to
minimize V in order to generate samples that resemble real ones. Goodfellow
et al. (2014) proved that the global optimum exists and the only solution
is when pGφ = pdata where pdata is the empirical distribution and pGφ is the
model distribution such that x̃ ∼ pGφ(x̃). Therefore, the algorithm converges
when the generative model perfectly replicates the data generating process.

Notice that, within the assumption of a naïve GAN model, it is essential
to balance the training between G and D. Indeed, when using backpropa-
gation, the generator updates depend on the gradient received by the dis-
criminator. A poorly trained discriminator would not provide a meaningful
gradient so neither the generator would update well. On the other hand, an
optimal discriminator might lead to a vanishing gradient for the generator
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that would never update towards convergence. Thus, a parameter ncritic ≥ 1
is chosen such that the discriminator is updated for ncritic times more than
the generator at every training step.

In practice, a GAN might be hard to train for multiple reasons and Sal-
imans et al. (2016) have suggested practical techniques such as mini-batch
discrimination and feature matching to prevent undesired behaviors. Other
works have explored the theoretical properties of the GAN divergence propos-
ing a more general framework (Nowozin et al., 2016) and a different proba-
bility distance measure (Arjovsky et al., 2017). Such formulations provided
new tools to ensure empirical convergence in some problems.

Mini-batch discrimination Among the most common failures that can
occur when training GANs there is mode collapse. This undesired behavior
occurs when the generator collapses to the point of always emitting the same
sample no matter what its input is. Usually, the discriminator processes
each sample independently and therefore there is no guarantee that the com-
bination of multiple gradient signals is coordinated. Salimans et al. (2016)
proposed to address this issue by making the discriminator able to look at
multiple data points together and then avoiding uncoordinated generator up-
dates. This technique called mini-batch discrimination is quite general, and
it may vary depending on modeling choices. In particular, it depends on
the discriminator architecture. In general, it consists in the use of a feature
aggregation method (e.g., sum or mean of non-linear transformations of the
input feature vector) in combination with individual features provided as
inputs to the discriminator. In this way, at some point of the discrimina-
tor forward pass, each sample intermediate representation would be in part
composed of a combination of features from the entire minibatch.

Feature matching Another proposed technique for preventing mode col-
lapse is feature matching. This method relies on the idea of training the
generator to match statistics of the real data instead of maximizing the GAN
objective directly. The discriminator is still trained as a classifier, but its pur-
pose is then to provide data statistics in form of representations from hidden
layers. Let f be an intermediate layer of the discriminator or a combination
of more, then the new generator objective becomes

L(θ) = ‖Ex∼pdata [f(x)]− Ez∼pz [f(Gθ(x)] ‖2 . (2.9)

All other GAN training steps and model details remain unchanged. In this
way, the generator is pushed to create samples that have the same statistics
of the ones from the dataset.
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Wasserstein GAN First introduced by Arjovsky et al. (2017), the Wasser-
stein GAN (WGAN) is an effective and powerful alternative to the origi-
nal GAN objective optimization. WGAN minimizes a reasonable and ef-
ficient approximation of the earth mover’s distance (EMD), also know as
Wasserstein-1 distance, defined between two probability distributions. For-
mally, the Wasserstein distance between p and q, using the Kantorovich-
Rubinstein duality (Villani, 2008), is defined as

DW [ p ‖ q ] = sup
‖f‖L≤1

Ex∼p(x) [f(x)]− Ex∼q(x) [f(x)] , (2.10)

where the supremum is over all the 1-Lipschitz functions f : X → R. In
general, a function f : X → Y is called K-Lipschitz continuous if given
two metric spaces (X , dX ) and (Y , dY), there exists a K ∈ R+ such that
dY(f(x1) − f(x2)) ≤ KdX (x1 − x2) ∀x1, x2 ∈ X (O’Searcoid, 2006). In the
case of a GAN setting, f is the discriminator Dφ and it is parameterized with
φ by a neural network, thus the optimization problem becomes

min
θ

max
φ

Ex∼pdata(x) [Dφ(x)]− Ez∼pz(z)[Dφ(Gθ(z))] , (2.11)

where, in the original WGAN paper, weights φ are clamped to a fixed box
[−0.01, 0.01] in order to lie in a compact space and to make Dφ to be K-
Lipschitz for some K. Note that if we replace ‖f‖L ≤ 1 with ‖f‖L ≤ K then
we end up with K ·DW [ p(x) ‖ q(x) ]. Then, the loss function with respect
to the generator parameters becomes

L(z(i); θ) = −Dφ(Gθ(z
(i))) , (2.12)

and the loss function with respect to the discriminator parameters becomes

L(x(i), x̃(i);φ) = −Dφ(x(i)) +Dφ(x̃(i)) . (2.13)

Empirically, there are several advantages of using WGAN instead of the
standard GAN divergence. Namely WGANs i) do not require maintaining a
careful balance in training of the discriminator and the generator (conversely
to normal GAN models), ii) do not require a particular carefully design of
balanced generator, and discriminator networks and iii) do prevent the mode
collapse phenomenon better than normal GANs.

Improved WGAN Gulrajani et al. (2017) argued that the parameters
clipping in WGAN can lead to undesired behavior and non-convergence.
Moreover, it drastically reduces the expressiveness of the neural networks.
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Therefore, they introduced a gradient penalty which is a soft constraint on
the 1-Lipschitz continuity that does not suffer from the same problems. They
then proposed WGAN with gradient penalty (WGAN-GP) which have been
proven to be more stable and do not require any clipping. In order to satisfy
the 1-Lipschitz continuity, the new loss function with respect to the discrim-
inator is

L(x(i), x̃(i);φ) = −Dφ(x(i)) +Dφ(x̃(i))︸ ︷︷ ︸
original WGAN loss

+λ
(
‖∇x̂(i)Dφ(x̂(i))‖ − 1

)2︸ ︷︷ ︸
gradient penalty

, (2.14)

where λ > 0 controls the weight of the gradient penalty.
Gulrajani et al. (2017) proved that the optimal discriminator has a gra-

dient with norm equals to 1 almost everywhere. Therefore, it would be con-
venient to optimize while having a hard constraint ‖∇xDφ(x)‖ = 1 ∀x ∈ X .
However, it is unfeasible to ensure while using neural networks and classic
SGD. Instead, this is done with a point estimation, using random data-
points between real and generated samples. The mean squared error forces
the model to have a gradient close to 1 over the manifold X and therefore ap-
proximately satisfying the 1-Lipschitz continuity. WGAN-GP demonstrates
the same advantages of WGAN but allows more flexibility during learning
avoiding weight clipping.

2.3 Reinforcement Learning
Reinforcement learning (RL) is a broad term in machine learning that indi-
cates several techniques inspired by behaviorist psychology where intelligent
agents learn interacting with an environment which provides positive or nega-
tive rewards according to their behavior. In RL, rewards are the fundamental
component of learning since the latter is performed based on reward signals.
In general, reinforcement learningstudies the problem setting of an artificial
agent that takes actions to maximize a particular definition of a cumulative
reward function (Sutton and Barto, 1998; Li, 2017).

Most of reinforcement learning problems are modeled as Markov Decision
Processes (MDPs) where RL agents interact with environments over discrete
time steps (an RL schema is shown in Figure 2.3). The Markov property
states that the future depends only on the current state and action, but not on
the past. More formally, let S be the space of environmental states and A be
the action space, at each time step t, the agent receives a state st ∈ S as input
and selects an action at ∈ A according to a policy. The policy is a function
S → A that has to be learned through some optimization algorithm. A policy
can be defined either on a continuous or discrete action space and be either
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Agent

Environment

state reward

update

action

Figure 2.3: Reinforcement Learning schema: an agent in an environment
acts through actions changing the environment. Subsequently, the modified
environment updates its internal representation providing to the agent its
new state as well as a reward. The reward is a scalar real number which in-
dicates feedback on how good/bad was the previous action or how good/bad
is the new state. Eventually, the agent acts again based on the new state.

stochastic or deterministic. A stochastic policy is represented by πθ(s) =
pθ(a|s) which is a parametric distribution in θ that assigns a probability
density to actions ∈ A conditioned on a state s. The resulting action is
then sampled a ∼ πθ(s). Conversely, a deterministic policy is represented by
a = µθ(s) which deterministically outputs an action.

After an agent acts, the environment changes according to its dynamics.
In particular, it updates its observable state to st+1 according to a, possibly
stochastic, transition function st+1 ∼ p(st+1|st, at). Notice that the internal
environmental status may differ for its observable state. In a full observ-
able environment, the agent is assumed to observe the current environmental
state which coincides with its internal status. In a partially observable envi-
ronment, the agent has access to a restricted part of its status. Additionally,
after transitioning from st to st+1 with action at, the environment provides
an immediate reward signal rt ∈ R from a reward function r(st, at). This
process continues until it reaches a terminal state.

From each state, the agent objective is to maximize the discounted future
expected return E[Rt] with Rt = E

[∑∞
k=0 γ

k rt+k
]
which is an accumulated

episodic reward with a discount factor γ ∈ (0, 1] that regulates the impor-
tance assigned to future rewards. The value function V π(st) = E[Rt|st] of
the policy πθ is defined as the expected return starting at state st (Sutton
and Barto, 1998). Similarly, the state-action value function Qπ(st, at) =
E[Rt|st, at] of the policy π is the expected return starting at state st and
performing the action at. An RL algorithm is designed to find a policy that
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selects actions with maximum expected future return from all states.
The variety of RL algorithms and settings is vast, and we do not aim to

provide a broad overview of them. In this work, we restrict the exploration
of RL techniques with the use of a deterministic policy optimized with an
off-policy gradient-based method (a detailed explanation will follow). In par-
ticular, we employ a simplified version of the off-policy deep deterministic
policy gradient (DDPG) introduced by Lillicrap et al. (2016). We addition-
ally present a general introduction to other essential RL concepts needed to
understand this work.

Off-policy methods optimize an estimation policy, the policy that is eval-
uated and improved, independently from the policy used to generate be-
havior, called behavior policy. Conversely, on-policy methods estimate the
value of a policy while using it. In an on-policy setting, learning algorithms
optimize the expected return of the policy including the exploration steps.
Off-policy algorithms can benefit from agents that behave with a certain de-
gree of randomness, according to a behavior policy, to balance exploration,
and meanwhile, still optimizing a deterministic behavior policy. Generally,
behaving according to a deterministic policy may not provide enough explo-
ration resulting in converging to poor policies.

Stochastic Policy Gradient and REINFORCE Policy gradient (PG)
methods optimize a policy descending the gradient of a differentiable loss
function. The idea behind these algorithms is to optimize a parameterizable
policy function defining a loss based on expected rewards. Let then consider
a stochastic policy πθ : S → A, a performance objective J(πθ) = E[Rt|πθ] to
maximize, indicating the expected future return using the policy πθ, and the
discounted state distribution ρπ as a probability distribution over the state
space S following the policy πθ. We can then write the on-policy performance
objective as

J(πθ) =

∫
S
ρπ(s)

∫
A
πθ(a|s) Qπ(s, a) ds da (2.15)

= Es∼ρπ ,a∼πθ [Qπ(s, a)] ,

where ρπ(s) indicates the evaluation of the probability density of state s
according to ρπ. Intuitively, optimizing this objective is equivalent of finding
a policy that selects actions that maximize expected future returns from all
states. Besides, the expected returns from all states are weighed according
to the probabilities of observing such states during episodes. Its gradient is
then (Sutton and Barto, 1998):

∇θJ(πθ) = Es∼ρπ ,a∼πθ [Qπ(s, a) · ∇θ log πθ(a|s)] . (2.16)



20 CHAPTER 2. BACKGROUND

Notice that the policy gradient does not depend on the gradient of the state
distribution and therefore the computation of this gradient is a simple ex-
pectation.

A fundamental issue that policy gradient algorithms address in different
ways is how to estimate the action-value function. For instance, Mnih et al.
(2013) used a neural network to approximate Qπ(s, a) ≈ Qπ

φ(s, a) with pa-
rameters φ. Moreover, one more simple approach is to use a sampled return
Qπ(st, at) ≈ Rt which lead to the formulation of a variant of the REIN-
FORCE algorithm (Williams, 1992). REINFORCE also subtracts a control
variate (also known as baseline) from the expected return to reduce the vari-
ance of the gradient estimation which is usually high. Baselines are unbiased
in expectation (Williams, 1992) and several alternative have been proposed
to choose them optimally (Peters and Schaal, 2008).

Deterministic Policy Gradient algorithms are known to perform well
or even better in high-dimensional action spaces compared to their stochastic
counterparts (Silver et al., 2014). Let then consider a deterministic policy µθ :
S → A, a performance objective J(µθ) = E[Rt|µθ] to maximize, indicating
the expected future return using the policy µθ, and the discounted state
distribution ρµ as a probability distribution over the state space S following
the policy µθ. Similarly to the stochastic case, following Silver et al. (2014),
we can then write the on-policy performance objective as

J(µθ) =

∫
S
ρµ(s) Qµ(s, a)

∣∣
a=µθ(s)

ds

= Es∼ρµ
[
Qµ(s, a)

∣∣
a=µθ(s)

]
, (2.17)

where there is no need to integrate over the action space since the policy
is deterministic. Indeed, every state is mapped to only one possible action.
The objective J has to be maximized and its gradient with respect to the
parameters θ to ascend is (Silver et al., 2014):

∇θJ(µθ) = Es∼ρµ
[
∇θµθ(s) ∇aQ

µ(s, a)
∣∣
a=µθ(s)

]
. (2.18)

Similarly, they extended this derivation for off-policy methods that learn
a deterministic target policy from trajectories generated by a stochastic be-
havior policy β(s) 6= µθ(s). Therefore the objective becomes

Jβ(µθ) =

∫
S
ρβ(s) V µ(s) ds , (2.19)



2.3. REINFORCEMENT LEARNING 21

and eventually, the off-policy deterministic policy gradient to ascend is

∇θJβ(µθ) ≈ Es∼ρβ
[
∇θµθ(s) ∇aQ

µ(s, a)
∣∣
a=µθ(s)

]
, (2.20)

where the approximation is due to a dropped term analogously to Degris et al.
(2012). Notice that Silver et al. (2014) provided the full gradient derivation
with a proof of existence and necessary conditions.

Deep Deterministic Policy Gradient Lillicrap et al. (2016) employed
off-policy deterministic policy gradient in combination with neural network
function approximators and other techniques such as target networks and
experience replay. This method is known as Deep Deterministic Policy Gra-
dient (DDPG). They approximated the state-action value functionQµ(s, a) ≈
Qµ
ψ(s, a) with parameters ψ. They used a recurrence relation, known as the

Bellman equation (Bellman, 2013), to rewrite the deterministic state-action
value function as

Qµ(st, at) = Est+1∼p(st+1|st,at)

[
r(st, at) + γQµ(st+1, at+1)

∣∣
at+1=µθ(st+1)

]
,

(2.21)
They also employed Q-learning (Watkins and Dayan, 1992) which uses a

greedy policy µθ(s) = maxaQ
µ
ψ(s, a) in combination with a different stochas-

tic behavior policy βθ(s) = µθ(s) + ε, with ε some noise source, to generate
transitions. The function Qµ

ψ is trained with mean squared error minimizing
the loss

L(ψ) = Est∼ρβ ,at∼β,st+1∼p(st+1|st,at)

[(
Qµ
ψ(st, at)− yt

)2]
, (2.22)

where
yt = r(st, at) + γQµ

ψ′(si+1, at+1)
∣∣
at+1=µθ′ (si+1)

. (2.23)

Notice that, µθ′ 6= µθ as well as Qµ
ψ′ 6= Qµ

ψ. The two neural networks share
their internal structure, but they are parameterized differently. That is be-
cause, also according to Mnih et al. (2013), directly updating neural network
parameters is unstable in many noisy environments and it may lead to unde-
sired behavior. When Qµ

ψ is prone to divergence also µθ is, since its updates
depend on the gradient provided by the state-action value network. For these
reasons, DDPG uses separate target networks for calculating updates but,
differently from Mnih et al. (2013), it uses soft updates, instead of directly
copying the weights after a certain number of iterations. In particular, at
the beginning of the training parameters are initialized equally (i.e., θ = θ′

and ψ = ψ′) but in the training loop, the weights of the target networks
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are updated slowly from the original ones using θ′ ← τθ + (1 − τ)θ and
ψ′ ← τψ + (1− τ)ψ as update rules with τ � 1. Lillicrap et al. (2016) em-
pirically showed and argued that such soft updates change the optimization
process of the state-action network closer to a problem of supervised learning.
Therefore, it is an easier and more stable learning task, with convergence to
more robust solutions.

Moreover, similarly to Mnih et al. (2015), DDPG employed a replay buffer
to stabilize training. This buffer consists of a finite sized memory which stores
episode transitions (st, at, rt, st+1) according to the exploration policy. The
buffer is circular, meaning that when full, the oldest samples are discarded
and replaced. While training, at each step, a certain number of transitions
are uniformly sampled from the replay buffer and assembled in a minibatch
used to train the networks. In practice, this was observed to be beneficial
since it allows learning using a set of uncorrelated transitions.

Eventually, in DDPG, the policy updates are employed using DPG as in
Equation 2.20. The training procedure is outlined in Algorithm C.1.

2.4 Graph Convolutions

Convolutional neural networks (CNNs) (LeCun et al., 1998) provide an effi-
cient architecture to extract meaningful information and statistical patterns.
They learn local structures and how to compose them to form a hierarchical
representation using filters. Convolutional filters are learned from the data to
recognize features. Filters are translation-invariant which means that they
detect features independently of their spatial locations. CNNs are widely
used to deal with images, videos and sound data (LeCun et al., 2015), how-
ever, the classic notion of convolution is well-defined on the Euclidean space
but not on graphs since there is no unique definition of translation on graphs
from a spatial perspective (Bruna et al., 2014). Intuitively, if we imagine a
convolution of a 2D signal (e.g., an image), then there exists concepts of top,
bottom, left and right where, in a graph, that is not the case since taking a
node and its neighbors there is no particular definition of spatial locations.

The study of graphs in the spectral domain led to the formulation of
spectral graph convolutions (see Section 2.4.1) that provided a way to apply
convolutions to graphs. Spectral graph convolutions is a general framework
and its direct implementation would suffer from high computational com-
plexity. We present a brief overview of two approaches that showed to be
effective approximations of spectral graph convolutions: Fast Localized Spec-
tral Filtering proposed by Defferrard et al. (2016) in Section 2.4.2 and graph
convolution network (GCN) by Kipf and Welling (2017) in Section 2.4.3.
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2.4.1 Spectral Graph Convolutions

We here provide a spectral graph theoretical formulation of graph convolu-
tions. In particular, we are interested in processing signals defined on an
undirected, unweighted, and without self-loop connections. Spectral graph
theory provides a well-defined localization operator via convolutions using
the Kronecker delta in the spectral domain (Shuman et al., 2013). Graph
convolutions are defined as linear operators with the Fourier basis which is
represented by the eigenvectors of the graph Laplace operator (Von Luxburg,
2007; Defferrard et al., 2016).

The Laplace operator Let G = (V , E) be a graph, where V = {vi}Ni=1 is
the set of vertices (or nodes) and E ⊆ V × V is the set of edges (or links),
and f : V → R be a function of a real signal on this graph. Since f is defined
in a finite domain, it can be intended as a vector f ∈ RN , where N = |V|
and f(vi) = fi. Therefore, the space of all possible signals on finite graphs is
isomorphic to RN . It follows that the scalar product 〈f, g〉 =

∑N
i=1 f(vi)·g(vi)

can be defined on this space.
The Laplace operator (or Laplacian), usually denoted by the symbols

∇ · ∇f , ∇2f or ∆f , is the divergence of the gradient of a function f on the
Euclidean space. In a finite graph, an analog of the continuous Laplacian
is the discrete Laplace operator. Since it can be used as a linear operation
(matrix multiplication) over the finite vector f , the discrete Laplace operator
is more commonly called the Laplacian matrix.

The literature provides several formulations to define the Laplace operator
which leads it to have different properties (Chung, 1997). Let A be the
adjacency matrix of a graph G defined as a squared matrix N × N where
Aij = Aji = 1 ∀(vi, vj) ∈ E and 0 elsewhere, and D be the degree matrix,
diagonal, with entries Dii =

∑N
j=1 Aij. Then, i) the un-normalized graph

Laplacian matrix is L = D − A, ii) the symmetric normalized Laplacian
matrix is Lsym = D−1/2LD−1/2 = I − D−1/2AD−1/2, and iii) the random-
walk normalized Laplacian matrix is Lrm = D−1L = I − D−1A, where I
is the identity matrix. L, Lsym, and Lrm are both real symmetric positive
semidefinite matrices. Then, these Laplace operators can be seen as

(Lf)(vi) = (Lf)i =
N∑
j=1

Aij [f(vi)− f(vj)] , (2.24)

(Lsymf)(vi) = (Lsymf)i =
1√
Dii

N∑
j=1

Aij

[
f(vi)√

Dii

− f(vj)√
Djj

]
, (2.25)
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(Lrmf)(vi) = (Lrmf)i =
1

Dii

N∑
j=1

Aij [f(vi)− f(vj)] . (2.26)

These operators acts on the space of signals on the graph. Notice that the
relation with the continuous Laplacian is that the quadratic form 〈f,Lf〉i =∑N

j=1 Aij [f(vi)− f(vj)]
2 is the discrete version of the quadratic form associ-

ated with the Laplace operator in Rn: 〈f,∆f〉 =
∫
‖∇f‖2dx. Such quadratic

form measures the smoothness of the function f in the topology of the graph
meaning how much adjacent nodes takes similar signal values.

For simplicity, we will consider L as the Laplacian matrix for the following
augmentations even though they are also valid for both Lsym and Lrm.

Graph Fourier Transform In the real line R, the Fourier transform of a
signal f is defined as

f̂(ξ) = 〈f, e2πiξt〉 =

∫
R
f(t) e−2πiξtdt (2.27)

where e2πiξt are the eigenfunctions of the one dimensional Laplace operator
in R. Analogously, the Fourier transform on a graph is defined using the
Laplacian matrix (Moon and Spencer, 1961). L is diagonalizable such that
L = UΛU> where U = [u(1), ..,u(N)] ∈ RN×N is the graph Fourier basis
such that U> = U−1, and Λ = diag([λ1, .., λN ]) ∈ RN×N is a diagonal
matrix whose diagonal elements are eigenvalues. The set {u(i)}Ni=1 ∈ RN is
composed of orthonormal eigenvectors, known as the set of graph Fourier
modes, and they are associated with {λi}Ni=1 ∈ R which are real nonnegative
eigenvalues known as frequencies of the graph. Thus, the graph Fourier
transform of a signal in vectorial form f ∈ RN is then defined as f̂ = U>f
where the inverse Fourier transform is f = Uf̂ (Shuman et al., 2013). Since
the Fourier transform is on the Euclidean space, it allows the formulation of
convolutions.

Graph filtering Convolutions beween two signals g and f corresponds to
multiplication in frequency domain (g ∗ f)(ξ) = ĝ(ξ) · f̂(ξ). Therefore, a
graph convolution operator ∗G is defined as

g ∗G f = U((U>g)� (U>f)) , (2.28)

where � is the element-wise Hadamard multiplication. Since we are inter-
ested in learning a convolutional filter parameterized by θ, the convolution
of a signal can be rewritten as a filter

gθ ∗G f = gθ(L)f = gθ(UΛU>)f = Ugθ(Λ)U>f , (2.29)
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where gθ(Λ) is a diagonal matrix interpreted as a function of the spectrum
(eigenvalues) of L. gθ might be a non-parametric filter if all parameters are
free such that gθ(Λ) = diag(θ) with θ ∈ RN .

2.4.2 Fast Localized Spectral Filtering

Non-parametric filters are not localized and their learning complexity is in
O(N) (Defferrard et al., 2016). The use of a polynomial filter can overcome
these issues defining

gθ(Λ) ≈
K−1∑
k=0

θkΛ
k , (2.30)

where θ ∈ RK is a vector of polynomial coefficients. Such filter is K-localized
which means that for each vertex, the filter acts only within its K-th order
neighbours (nodes that are at maximum K steps away from the considered
vertex). The learning complexity is O(K) which is the size of the filter, and
thus it has the same complexity as a classical CNN. The filter kernel centered
at vertex vi is localized with a Kronecker delta function δi ∈ RN so then the
value at vertex j is (gθ(L)δi)j = gθ(L)ij. Notice that gθ(L)ij = 0 if vi and vj
are S-th order neighbours for S > K.

There are two main drawbacks evaluating Equation 2.29: i) the multipli-
cation with the eigenvector matrix U is computationally expensive O(N3),
and ii) computing the eigendecomposition of L is O(N3). For small graphs,
these are minor issues, but the complexity is too high for most practical
problems. Thus, Hammond et al. (2011) proposed to approximate gθ(Λ) by
a truncated Chebyshev polynomial expansion using

gθ(Λ) ≈
K−1∑
k=0

θkTk(Λ̃) , (2.31)

where θ ∈ RK are Chebyshev coefficients and polynomials Tk(Λ̃) ∈ RN×N

are evaluated at the rescaled eigenvalues diagonal matrix Λ̃ = 2/λmax ·Λ−I.
The Chebyshev polynomial of the first kind of order k, Tk(x), is defined by
the recurrence relation T0(x) = 1, T1(x) = x, Tk(x) = 2xTk−1(x) − Tk−2(x).
Eventually, the filtering operation can be written as

gθ ∗G f = gθ(L)f ≈
K−1∑
k=0

θkTk(L̃)f , (2.32)

where Tk(L̃) is the Chebyshev polynomial of order k evaluated at the rescaled
Laplace matrix L̃ = 2/λmax ·L− I. Using the recurrence relation to compute
the filtering operation lead to cost O(K|E|)� O(N2).
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2.4.3 Graph Convolutional Networks

Kipf and Welling (2017) proposed to limit the convolution operation in Equa-
tion 2.32 with K = 1, i.e. a function that is linear with respect to L and
therefore a linear function on the graph Laplacian spectrum. They argued
that such formulation can alleviate the problem of overfitting on local neigh-
borhoods for large graphs. Moreover, this approximation allows building
deeper neural network models which in practice is known to improve model-
ing capacity on several domains. With these assumptions, graph convolution
networks (GCNs) further approximate λmax = 2, expecting neural network
parameters to adapt to this change in scale during training, leading to for-
mulate

gθ ∗G f ≈ θ0f + θ1(A− I)f , (2.33)

where θ0 and θ1 are scalars. Thus, this can be seen as a sum of a box filter
and a self-loop filter. Within the GCN framework we can then generalize the
definition of a convolution of a multidimensional signal X = [x(1), ..,x(D)] ∈
RN×D filtered by F feature maps as

X̃ = XΘ0 + LXΘ1 , (2.34)

where Θ0,Θ1 ∈ RD×F are matrices of parameters and X̃ ∈ RN×F is the
resulting signal. Information propagation through multiple k-th order neigh-
bours is done stacking multiple convolutions and applying nonlinearities be-
tween layers.

In the GCN setting, one can alternatively see a convolution as a series
of node-to-edge and edge-to-node information propagation operations (Kipf
et al., 2018) as we outline in Figure 2.4. Moreover, we can further generalize
taking into account an edge annotation and apply a propagation conditioned
on edges as well. More formally, let aV : V → XV be a function that assigns
to each vertex an annotation from a set XV and aE : E → XE a function that
assigns to each edge an annotation from a set XE , then the triple (G, aV , aE)
is an labeled graph. Then, at each propagation step `, first a node-to-edge
propagation function acts transforming each couple of adjacent node signals
into an intermediate vector

h
(`)
(i,j) = f (`)

v→e(h
(`)
i ,h

(`)
j ,x(i,j)) , (2.35)

where h
(
i`) and h

(
j`) are hidden node annotations and x(i,j) = aE(vi, vj) is

the edge annotation between vi and vj. Subsequently, for each vertex vi, an
edge-to-node propagation function takes all intermediate vectors of the edges
connected to vi to update the hidden node annotation

h
(`+1)
i = f (`)

e→v({h
(`)
(i,j) | vj ∈ Ni},xi) , (2.36)
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ù

v → e e → v

Figure 2.4: The graph convolution network information propagation algo-
rithm consists in a series of node-to-edge and edge-to-node propagation steps.
First, a node-to-edge function transforms node signals based on the edge an-
notation between them. Secondly, a node-to-edge function aggregates all
intermediate transformations to update node signals.

where Ni is the set of neighbour nodes of vi and xi = aV(vi) is the node
annotation of vi.

Note that the above formalism is quite general and particular models or
applications make more assumptions on the structure of both propagation
functions.

Relational graph convolution networks (R-GCNs) As a way to in-
corporate edge annotations, relational graph convolution network (R-GCN)
makes use of GCNs in combination with labeled edges to model relations
between entities in a knowledge-graph (Schlichtkrull et al., 2018). In par-
ticular, they model entities as nodes and relations as edges. Since relations
between entities are fixed and taken from a finite set R, they model the
propagation step as a sum (aggregation) of neighbours signals transformed
with relation-conditioned functions fr ∀r ∈ R. The update step is then

h
(`+1)
i = σ

f (`)
s (h

(`)
i ) +

∑
j∈N ri

∑
r∈R

1

ci,r
f (`)
r (h

(`)
j )

 , (2.37)

where σ is any non-linear function, fs is the self-loop function, N r
i indicates

the set of neighbor indices of node vi under the relation r ∈ R, ci,r is a
normalization constant (e.g., ci,r = |N r

i |), and each f∗ is an affine transfor-
mation.



28 CHAPTER 2. BACKGROUND



Chapter 3

Method

In this chapter, we first cover several techniques we use to build generative
models for molecular graphs. Subsequently, we show how we construct such
models and how we intend to evaluate them. We introduce the problem
generally, describing how graphs are used as a representation for molecules
in Section 3.1. Then, in Section 3.2, we delineate how we use vectorial
representations such as matrices and tensors to describe graphs in a suitable
way for being processed by neural networks. We also show how we propose
to use such numerical representations in combination with R-GCNs and NNs
to encode graphs in vectors and decode vectors in graphs. Subsequently,
we show how we use these building blocks to construct molecular graph
variational auto-encoders in Section 3.3, generative adversarial networks in
Section 3.4, and also to combine them with reinforcement learning in Section
3.5. Eventually, we describe and motivate evaluation techniques we intend
to use in our experiments in Section 3.6.

3.1 Graph representation of molecules

As we already state in Section 1.1, graphs are a much more appealing way
to represent molecules rather than others like the character-based SMILES
representation. Therefore, we are generally interested in a generative model
for discretely labeled graphs. Recalling the definition of an labeled graph:
let G = (V , E) be a graph, where V = {vi}Ni=1 is the set of vertices and
E ⊆ V ×V is the set of edges, and let aV : V → XV be a function that assigns
to each vertex an annotation from a set XV and aE : E → XE a function that
assigns to each edge an annotation from a set XE , then the triple (G, aV , aE)
is an labeled graph. We define a discretely labeled graph as an labeled graph
where both XV and XE are finite and discrete sets.

29
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We can always construct a graph representation for a molecule where
nodes denote atoms, and edges denote bonds. Indeed, we use annotations,
assigning at each node a discrete type from XV , which indicates the atom
type (e.g., hydrogen, nitrogen, oxygen, etc.), and assigning at each edge an
annotation from XE that represent different types of bonds (e.g., single, aro-
matic, double, etc.). Naturally, a molecule itself has much more additional
information that cannot be represented using the formalism described above.
Limitations of our graph representation approach are that we do not encode
any information about i) the 3D structure of compounds, ii) higher level
physical properties such as secondary/tertiary structures, and iii) the energy
levels, masses, or other atom properties. Notice that one may extend the edge
annotation set to add some extra atom properties. For generative processes
like VAEs this might be beneficial, and one may include this additional infor-
mation as an input of the model and avoid it on the reconstruction. However,
in GANs for instance, this could be problematic since the generator, having
to predict more values, would face a much harder task. For simplicity as well
as aiming for a more general model for also non-molecular graphs, we do not
include further information into annotations.

The main objective of our molecular graph generative models is then to
learn some function f : Z → XG that maps D-dimensional vectors from space
Z = RD in the space of all discretely labeled graphs XG. Naturally, we also
ensure that, from a known distribution defined on Z, we can sample vectors
which, through f , are mapped to a proper graph manifold. These issues
are addressed using either VAEs or GANs (see Sections 3.3 and 3.4 respec-
tively). Additionally, we are not only interested in sampling general graphs
but molecular graphs that correspond to real and valid chemical compounds
that resemble the property of a dataset or that are optimized for presenting
some useful properties. Optimization towards some chemical scores is done
using reinforcement learning (see Section 2.3).

The space of all possible graphs is infinite, and therefore, for practical
reasons, it has to be limited in some way. In this work, we limit XG to be the
space of graphs of at mostN = 9 nodes. We also limit the node annotation set
to be |XV | = 5 (carbon, oxygen, nitrogen, fluorine, and one pad symbol), and
the edge annotation set to be |XE | = 5 (single, double, triple, aromatic, and
one pad symbol that denotes no bond). Notice that these dimensionalities
are an arbitrary choice and we choose these particular ones since they are
enough to represent all molecules from the dataset we use (see Section 3.6.1
for dataset details). Expanding the number of nodes would be useful in
practice since the search for new drugs or materials would benefit from an
exploration of larger compounds. In this work, we impose these limitations to
avoid a computational bottleneck while doing experiments due to the limited
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Nodes Combinations

N = 1 5
N = 2 130
N = 3 15755
N = 4 9781380
N = 5 30527359505
N = 6 476867685562630
N = 7 37253379852304703255
N = 8 14551952481746704111343880
N = 9 28421723982356489181549082047005

Table 3.1: Total number of all possible graphs up to N nodes with |XV | = 5
vertex types and |XE | = 5 edge types. Such number grows exponentially
reaching 2.84 · 1031 with just 9 vertices.

availability of resources. Indeed, working with bigger molecules, increases the
search space of parameters and imposes a severe limitation on the scalability
of the algorithm.

Besides, given such limits on the number of nodes, node types, and edge
types, the total number of all possible graphs is ≈ 2.84 · 1031 which is still an
extremely high number. Indeed, the number of all possible graphs up to N
nodes is given by the combinatorial equation

C(N,XV ,XE) =
N∑
i=1

|XV |i · |XE |(i−1)·i/2 , (3.1)

which grows exponentially in the number of nodes and polynomially in the
number of vertex and edge annotations. In Table 3.1, we show how this
number grows in N ∈ {1, .., 9}. Notice that the number of valid molecular
graphs (i.e., discretely labeled graphs that represent compounds physically
possible to exist in nature) is expected to be orders of magnitude less than
the total number of possible graphs.

3.2 Vectorial representation of graphs

Neural networks are well known universal functional approximators. For the
nature of their inner structure, neural networks receive vectors as inputs,
and they produce vectors as outputs. However, neither regular graphs nor
labeled graphs are vectors, and therefore, there is the need of defining a
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Figure 3.1: One-hot representation of a graph defined on the space of graphs
with |XV | = 4 vertex types and |XE | = 2 edge types. Nodes with the same
color denotes vertices with the same type which have the same vectorial
representation. The same holds for edge types (single and double line denotes
two different edge types).

bijective function to transforms graphs in a vectorial form. In particular,
both the encoder of a VAE and the discriminator of a GAN need a graph-to-
vector function. Indeed, they both receive graphs as inputs and they need
to process them with neural networks and therefore via a vectorial form.
Conversely, both the decoder of a VAE and the generator of a GAN output
a set of vectors that have to be converted into graphs.

With neural networks, categorical input variables are usually represented
through one-hot vectors (i.e., vectors with zeros in all entries but one that
indicates which category the variable belongs to). Thus, to encode nodes,
we define a function mV : XV → R|XV | that takes node annotations ∈ XV and
returns one-hot vector representations of them. Afterwards, let {x}Ni=1 be all
one-hot vectors that encode atom types of a molecular graph G such that
xi = mV (aV(vi)) for i ∈ {1, .., N}, then, a graph level matrix X ∈ RN×|XV | =
[x1, ..,xN ]> represents all node types of G in a compact form. Similarly,
another function mE : XE → R|XE | is used to encode edge annotations into
one-hot vector representations. Similarly to the node annotation encoding,
these vectors are aggregated into a tensor A ∈ RN×N×|XE | where Aij ∈ R|XE |

is the vectorial representation of the edge annotation between vi and vj, i.e.,
Aij = mE(aE((vi, vj))). The tensor A can also be seen as a series of stacked
adjacency matrices where each matrix ∈ RN×N indicates connection of some
edge type only: A = [A1, ..,A|XE |]

>.
Using both X and A, we can then encode a graph in a vectorial repre-

sentation. In Figure 3.1 we show an example of a graph where both node
and edge annotations are encoded in one-hot vectors. In Figure 3.2, we out-
line the triple representation used in this work: molecule objects, discretely
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(a) (b) (c)

A

X

Figure 3.2: Molecules triple representation. The molecule (a) is represented
as an labeled graph (b) where nodes denote atoms and edges denote bonds.
The graph is represented through a combination of an annotation matrix X
which sparsely encodes node types and the adjacency tensor A which sparsely
encodes edge types. All representations preserve the molecular structure and
therefore from all of them the other two can be retrieved.

labeled graphs, and the vectorial form.
Decoding, which consists in starting from X and A and constructing an

labeled graph, is trivial since each one-hot vector corresponds to a particu-
lar node or edge annotation. However, it is not possible to outputs discrete
objects directly while using neural networks. Categorical output variables
are usually represented by a vector that parameterizes a categorical distri-
bution (i.e., the value of each entry denotes the probability of the variable
of belonging to a particular category). For instance, in case of a node anno-
tation it would be a vector in the simplex x ∈ ∆|XV|−1 :

∑|XV|
i=1 xi = 1 where

each entry xi indicates the probability of the node of belonging to the i-th
annotation/type. Neural network outputs can then be discretized through
sampling. Thus, we denote with X̃ and Ã the discrete samples from the
continuous X and A respectively (see Figures 3.3 and 3.4 for an overview).

Categorical sampling can be performed using the Gumbel distribution via
the Gumbel-Max trick (Maddison et al., 2014). Given a vector of probabilities
x ∈ RD then x̃ is the resulting one-hot vector:

x̃ = one-hot
(

arg max
i∈{1,..,D}

log(xi) + gi

)
with gi ∼ Gumbel(0, 1) , (3.2)

where Gumbel(0, 1) is the standard Gumbel distribution (Gumbel, 1954).
Sampling from the standard Gumbel distribution can be easily performed
using the standard uniform distribution since, given u ∼ U(0, 1), then g =
− log(− log(u)) is a sample from the standard Gumbel distribution.

Unfortunately, categorical sampling is not a differentiable operation which
makes it problematic to use in combination with the backpropagation mech-
anism. We employ a simple gradient estimator for categorical variables also
known as the Gumbel-Softmax trick (Jang et al., 2017).
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Figure 3.3: The predicted annotation matrix X ∈ RN×T , with T = |XV |,
is dense, and each row indicates a node {vi}Ni=1 where columns indicate the
predicted probabilities (scales of blue) of each nodes for being of a certain
type. Through categorical sampling, the matrix X̃ is then sparse and one-
hot on the rows. Note that sampling is stochastic and not all types with
maximum probability are selected.

Figure 3.4: The adjacency tensor A ∈ RN×N×Y , with Y = |XE |, is dense, and
each vector Aij ∈ RY indicates the predicted probabilities (scales of blue)
of the edge between vertices vi and vj of being of a certain type. Through
categorical sampling, the adjacency tensor Ã is then sparse and one-hot on
the last dimension. Note that sampling is stochastic and not all types with
maximum probability are selected.

Gumbel-Softmax trick The concrete distribution was independently dis-
covered by Maddison et al. (2017) and Jang et al. (2017), and used as a
continuous relaxation of the Gumbel-Max trick. In particular, they used the
Gumbel-Max in the forward pass, and they estimated the gradient through
its relaxation. This operation was named Gumbel-Softmax trick. They used
the softmax function as a differentiable and continuous approximation of the
arg max. Additionally, they estimated the gradient of categorical sampling



3.2. VECTORIAL REPRESENTATION OF GRAPHS 35

through a continuous relaxation of x̃, as is defined in Equation 3.2, such that
the gradient is ∇θx̃ ≈ ∇θx̂ where

x̂ =
exp ((log xi + gi)/τ)∑D
j=1 exp ((log xj + gj)/τ)

. (3.3)

The temperature τ controls how smooth the distribution is, and g1, .., gd are
sampled from the standard Gumbel distribution. The temperature can be
annealed according to some schedule. When τ → 0, samples for the Gumbel-
Softmax distribution approaches the generation of one-hot vectors from the
categorical distribution.

3.2.1 Graph encoding

We define as graph encoding the procedure of transforming the vectorial
graph representations X and A into a graph-level vector hG. The encoding
consists of two stages: information propagation through graph convolution
layers and aggregation of node representations.

Edge-type-conditioned convolutions A series of graph convolution lay-
ers convolve node signals X = [x1, ..,xN ]> using the graph adjacency tensor
A. We base our model on Relational-GCN (Schlichtkrull et al., 2018), a
convolutional network for graphs with support for multiple edge types (see
Section 2.4.3 for more details). In particular, at every layer `, feature repre-
sentations of nodes are convolved/propagated according to:

h
(`+1)
i = tanh

f (`)
s (h

(`)
i ,xi) +

N∑
j=1

|XE |∑
y=1

1

|Ni|
Aijy f

(`)
y (h

(`)
j ,xj)

 , (3.4)

where h
(`)
i is the signal of the node vi at layer ` and f

(`)
s is a linear transfor-

mation function that acts as a self-connection between layers. For each layer,
and each edge type, f (`)

y is an edge-type specific affine function. Ni denotes
the set of neighbors for node vi. The normalization factor 1/|Ni| ensures that
activations are on a similar scale irrespective of the number of neighbors.

Graph aggregation Zaheer et al. (2017) showed that a function f(X) op-
erating on a set X having elements from a countable universe, is a valid set
function, i.e., invariant to the permutation of instances in X, if and only if it
can be decomposed in the form ρ

(∑
x∈X φ(x)

)
, for suitable transformations

φ and ρ. Therefore, for each graph, after information has propagated through
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L convolutional layers, a graph-level vector representation is computed fol-
lowing the same principle. It is an aggregation of node representations trans-
formed with a function j and filtered with an attention mechanism through
the function i. Both functions take node state vectors after L convolutions
{h(L)

i }Ni=1 and node annotations {xi}Ni=1. Both fg and fr are implemented a
MLPs with a linear output layer. Then, following Li et al. (2016), we define
a graph level representation vector as

hG = tanh

(
N∑
i=1

σ
(
fg

(
h
(L)
i ,xi

))
� tanh

(
fr

(
h
(L)
i ,xi

)))
, (3.5)

where σ(x) = 1/(1+exp(−x)) is the logistic sigmoid function, and � denotes
element-wise multiplication. Then, hG is a vector representation of the graph
G that can be further processed by other functions.

3.2.2 Graph decoding

We define as graph decoding the procedure of transforming an embedding
vector hG into graph vectorial representations X and A. We identify three
steps of decoding: processing hG with an MLP, decoding nodes, that is pro-
ducing X, and decoding edges, that is producing A. We define h′G ∈ RD

as the graph level vector after processed by the MLP. We further define two
variations of node decoding: direct matrix annotation prediction, and in-
crementally predicting it using a recurrent neural network. We define three
variations of edge decoding as well: direct prediction of the adjacency ten-
sor, prediction of intermediate embeddings which decode into the adjacency
tensor through a dot-product, and incrementally predicting the adjacency
tensor using a recurrent neural network.

Node decoding The direct prediction of the annotation matrix X is an
affine transformation f : RD → RN×|XV | followed by a softmax function
applied to each row of the output matrix. In this way, X = f(h′G), and each
row parameterizes a categorical distribution over node types.

Node decoding - recurrent The incremental prediction of the annotation
matrix X is performed first using a recurrent intermediate function r : RD →
RM , for some arbitraryM ∈ N+, and secondly using an affine transformation
on the top of the recurrent layer f : RM → R|XV |. In the end, a softmax
function is applied to each output vector. In this way, the RNN predicts
node annotations incrementally. Vectors are stacked together to obtain X.
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Edge decoding - adjacency tensor The direct prediction of the adja-
cency tensor A is an affine transformation f : RD → RN×N×|XE | followed by
a softmax function applied along the last dimension. In this way, A = f(h′G),
and each slice Aij ∈ R|XE | parameterize a categorical distribution over edge
types.

Edge decoding - dot-product The dot-product edge decoding is per-
formed by first applying an affine transformation f : RD → RN×K×|XE | for
some arbitrary K ∈ N+, and secondly applying a batched dot-product such
that A′ = ZZ> where Z = f(h′G). A softmax function applied along the
last dimension transforms A′ into A. With Z> we denote the batched ma-
trix transpose operator such that if Z = [Z1, ..,ZN ] with Zi ∈ RK×|XE | ∀i ∈
{1, .., N} then Z> ∈ RN×|XE |×K = [Z>1 , ..,Z

>
N ]. With the batched dot-product

we denote a similar semantic: ZZ> = [Z1Z
>
1 , ..,ZNZ>N ]. The intuition behind

this decoding procedure is that for each predicting node, and for each edge
type, a neural network predicts a K-dimensional vector. The dot-product
between two vectors in this space is a scalar value that denotes the unnor-
malized probability of a link of some type between two vertices. Since in this
setting we generate the whole graph at once, there is the need of using the
tensorial forms described above.

Edge decoding - recurrent The incremental prediction of the adjacency
tensor A is performed similar to the recurrent node annotation predictions
and the edge dot-product decoding. First we use a recurrent intermediate
function r : RD → RM , for some arbitrary M ∈ N+, and secondly we use
an affine transformation on top of the recurrent layer f : RM → RK×|XV |.
Subsequently, stacking the outputs from f , we have a tensor Z ∈ RN×K×|XE |

which is transformed using the dot-product decoder (see above) in A. In this
way, the RNN predicts edge annotations incrementally.

3.3 Variational Auto-Encoder models
In this section, we show how we use graph-to-vector encoding and vector-
to-graph decoding functions from Section 3.2 to build a molecular graph
variational auto-encoder (see Section 2.1 for an overview on VAEs). We
outline the architecture of this model in Figure 3.5. Recalling the structure
of a VAE, we need to define an encoder eφ and a decoder dθ. Naturally,
eφ makes use of the graph-to-vector encoding function that takes vectorial
graph representations X and A to output a vector hG. Subsequently, we
feed hG into two MLPs that compute a mean µG and a covariance vector σG
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Figure 3.5: Outline of the molecular graph VAE model. Each graph is rep-
resented through the adjacency tensor A and annotation matrix X. The
encoder eφ processes the graph to output two graph level vector representa-
tions that parameterize a Normal distribution with mean µ and covariance
diag(σ). Using the reparameterization trick, z is computed and given to the
decoder dθ which outputs reconstructions Â and X̂.

respectively. Notice that as in Kingma and Welling (2013), we use a mean-
filed assumption i.e., the covariance matrix is diagonal and Σ = diag(σ).
These two vectors are used in combination with the reparameterization trick
to generate a sample zG from the posterior qφ(z|x). Notice that the prior
is a standard Normal distribution p(z) = N (0, I). The vector zG is further
processed by a decoder dθ that has to reconstruct the original inputs. The
decoder makes use of one of the previously defined vector-to-graph decoding
architectures to process hG and to output X̂ and Â.

Additionally, to optimize a VAE, we also need to define a reconstruction
loss to compute the ELBO. In particular, we need to define the negative
likelihood − log pθ(x

(i)|z(i)), for a data-point x(i) given the latent variable
z(i) ∼ qφ(z|x(i)). Since our inputs and outputs consist in a series of categorical
variables, we make use of the categorical cross entropy. In general, the cross
entropy between two probability distributions p and q, defined over on the
same domain/support X , is

H[p, q] = Ep(x)[− log q(x)] = −
∫
X
p(x) log q(x) dx , (3.6)

where the integral is a sum when X is finite. Then, in our case, we set p
as the empirical distribution or the probability of the observations (i.e., the
dataset), and q as the parameterized categorical distribution predicted as
the output of the decoder. The reconstruction loss between a pair of ground
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truth labels X(i) and A(i), and the predicted X̂(i) and Â(i), is then defined as

L(X(i),A(i), X̂(i), Â(i); θ, φ) = L(X(i), X̂(i); θ, φ) + L(A(i), Â(i); θ, φ)

L(X(i), X̂(i); θ, φ) = −
N∑
i=1

|XV |∑
j=1

X
(i)
ij log X̂

(i)
ij

L(A(i), Â(i); θ, φ) = −
N∑
i=1

N∑
j=1

|XE |∑
k=1

A
(i)
ijk log Â

(i)
ijk , (3.7)

where L(X(i), X̂(i); θ, φ) and L(A(i), Â(i); θ, φ) are two individual cross en-
tropies that summed up denotes the total loss. Notice that they depends on
θ and φ since X̂(i), Â(i) are computed using both the encoder and the de-
coder. Naturally, in a minibatch setting, the loss is computed as an average
of a set of losses.

3.4 Generative Adversarial models
In this section, we show how we use graph-to-vector encoding and vector-
to-graph decoding functions from Section 3.2 to build a molecular graph
generative adversarial network (see Section 2.2 for an overview on GANs).
We outline the architecture of this model in Figure 3.6. Recalling the struc-
ture of a GAN, we need to define a generator Gθ and a discriminator Dφ.
Naturally, Gθ is defined as the vector-to-graph decoding that takes random
vectors from a standard Normal distribution z ∼ N (0, I) and outputs vecto-
rial graph representations X and A. Conversely, the discriminator makes use
of the graph-to-vector encoding to produce intermediate hidden representa-
tions of graphs. Afterwards, an MLP takes such vectors to output scalar
values (i.e., logits). We employ WGAN with gradient penalty (WGAN-GP)
to improve the learning stability (see Section 3.4).

Since the outputs of the generator are continuous, when we need to gen-
erate actual molecules, we employ categorical sampling as defined in Section
3.2, to first discretize X and A, and then build a graph. We argue that
the generator should output discrete objects directly since the discriminator
may take advantage of the fact that samples from the dataset are always
discrete instead. For these reasons, we additionally explore three model vari-
ations that act between the outputs of the generator and the inputs of the
discriminator namely: i) we do not apply any discretization, i.e., we use the
continuous objects X and A directly during both the forward and backward
pass, ii) we add standard Gumbel noise to both X and A to make the gen-
eration stochastic while still forwarding and applying backpropagation with
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Figure 3.6: Outline of the molecular graph GANmodel. A vector z is sampled
from a standard Normal distribution N (0, I) and given to the generator Gθ

which outputs an adjacency tensor A and annotation matrix X. Based on
some differentiable function (i.e., either the identity function, the addition of
Gumbel noise, or the Gumbel-Softmax trick), A and X are transformed in
Ã and X̃. Subsequently, a discriminator Dφ takes these objects to classify
whether they comes from the generator or the empirical distribution.

continuous objects, and iii) we employ the Gubmel-Softmax trick to sample
form categorical distributions parameterized with X and A while being able
to use backpropagation with a gradient estimator (see Section 3.2 for more
details). When employing categorical sampling, the inputs of the discrimi-
nator of generated molecules are discrete, and therefore we address the issue
previously stated. However, since we make use of a gradient estimator, it
might lead to a harder optimization problem.

3.5 Reinforcement learning models
In this section, we show how we use graph-to-vector encoding from Section 3.2
to enrich both molecular graph VAEs and GANs with reinforcement learning.
RL is used as an additional component used during training to optimize the
generation of molecules towards desirable properties.

We employ a simplified version of the off-policy deep deterministic policy
gradient (DDPG) introduced by Lillicrap et al. (2016) (see Section 2.3). We
opted for that algorithm after observing poor results using REINFORCE
in combination with a stochastic policy during early stages of this research.
DDPG have shown good results in high dimensional spaces like the one we
are working with. Indeed, seeing the generation of X and A as an action,
the action space is A = RN×|XV |×N×N×|XE | which, with the assumptions from
Section 3.2, is R18225. Employing DDPG, we do not make use of either
the target networks and the replay buffer. Besides, we introduce two main
changes to the state-action value function.

In our case, the policy µθ is either the VAE decoder dθ or the GAN
generator Gθ. Both of them take a sample z for the prior as input, instead
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of an environmental state s, and they output a molecular graph as an action
(i.e., a = G where G is internally represented as the tuple X,A). Though
the regular state-action value function Qµ(s, a) takes both the environmental
state s and the action a, there is no need of providing any state s. Indeed, we
do not model episodes, nor do we have a model of the environment, so there is
no need to assess the quality of a state-action combination since it does only
depend on the action (i.e., the graph G). Therefore, we replace Qµ(st, at) =
E[Rt|st, at] with Rµ(a) = E[r|a] which represents just the expected immediate
reward of the generated molecule. We then approximate Rµ ≈ Rµ

ψ using
neural networks trained with mean squared error minimizing the loss

L(ψ) = Ez∼pz

[(
Rµ
ψ(a)− r(a)

)2] ∣∣∣∣
a=µθ(z)

, (3.8)

where the function r takes a molecular graph as input and outputs a reward.
The policy gradient and how we train the policy remain unchanged.

We will experiment with different rewards namely the quantitative es-
timate of druglikeness, the octanol-water partition coefficient, and the syn-
thetic accessibility score. In Section 3.6.3 we describe in detail what these
metrics are.

When we combine other generative models with reinforcement learning,
there is the need of defining a new merged loss. When using VAEs, the
decoder dθ is trained using a linear combination of the VAE loss (i.e., the
ELBO), and the rescaled RL loss (i.e., policy gradient). Similarly, when using
WGANs the generator Gθ is trained using a linear combination of the WGAN
loss (i.e., fooling the discriminator) and the rescaled RL loss. We rescale the
reinforcement loss LRL to have the two gradients at same magnitude. Thus,
the new combined policy gradient is

∇θL(θ) = λ · ∇θLgen + (1− λ)

∣∣∣∣LgenLRL
∣∣∣∣·∇θLRL , (3.9)

where λ ∈ [0, 1] is a hyperparameter that regulates the trade-off between
using the loss of the generative model Lgen (either VAE or WGAN loss), and
LRL. Conversely, the encoder eφ and discriminator Dφ are trained using only
the VAE or the WGAN objective respectively.

3.6 Evaluation techniques
In this section, we describe how we intend to evaluate our models. We will
perform experiments to evaluate our model variations in Chapter 5. For all
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experiments, we use the QM9 dataset (see Section 3.6.1 for details). We
employed quantitative metrics such as importance sampling log-likelihood,
the earth mover’s distance, and the average reward. These quantities measure
training convergence and can assess the overall performance of the generative
process. Moreover, we also use qualitative measures to validate molecules
generated by our models.

3.6.1 Dataset

The choice of a dataset for computational de novo drugs discovery should
require an unbiased and large sample of the chemical molecular space. How-
ever, the combinatorial nature of such a space imposes a practical trade-off
between a wide range of compounds and molecular sizes to approach the
problem feasibly. GDB-17 chemical universe is a database of 166.4 billion
molecules of up to 17 atoms (Ruddigkeit et al., 2012). It covers many drugs
and biologically active compounds. GDB-17 also contains millions of iso-
mers of known drugs, including analogs with high shape similarity to the
parent drug. However, for our computational resources, this dataset is too
big, so we used QM9, a curated subset of GDB-17 (Ramakrishnan et al.,
2014). QM9 is a popular dataset used in computational chemistry which
contains 133,885 organic compounds up to 9 heavy atoms: carbon (C), oxy-
gen (O), nitrogen (N) and fluorine (F). In Figure 3.7 we show some samples
from it. The predominant stoichiometry in QM9 is C7H10O2: there are 6, 095
constitutional isomers within the 134k molecules. Constitutional isomers are
compounds that have the same molecular formula (same atoms) but different
connectivity (different bounds).

This datset does not come with a predefined train, validation and test
splits and therefore we employed one by our own. We randomly take apart
10% of the dataset (13, 389 molecules) for validation and another 10% for
test. We split the dataset once and we keep this split for all experiments.

3.6.2 Quantitative evaluation

As quantitative evaluation measures we evaluate three different quantities
depending on the model employed namely: the importance sampling log-
likelihood of the test set (Burda et al., 2016) when using VAEs, the earth
mover’s distance (Gulrajani et al., 2017) between the generator distribution
and the empirical distribution when using WGANs, and the average rescaled
rewards when using reinforcement learning (RL) employing the same mea-
sures as Guimaraes et al. (2017).
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Figure 3.7: Random samples from the datset QM9. For each molecules we
show also its SMILES representation.

Log-Likelihood Measuring test set likelihood is a standard measure when
evaluating the performance of a probabilistic model with explicit likelihood
or evidence. VAEs do have an explicit likelihood computation. However, it
is analytically intractable as we showed in Section 2.1. Then, it is possible to
compute an approximation of it using Monte Carlo importance sampling (see
full derivation in Appendix B.2). The approximated log-likelihood (Burda
et al., 2016) per data-point is

log p(x(i)) ≈ log
1

M

M∑
j=1

pθ(x
(i)|z(i)) · p(z(i))

qφ(z(i)|x(i))︸ ︷︷ ︸
importance weight

∣∣∣∣∣
z(i)∼qφ(z|x(i))

, (3.10)

when the approximation is done using M samples from the same data-point
x(i) (notice that the sum is over j). The log-likelihood of the entire test
set X = {x}Ni=1, is the mean over data-point log-likelihoods log p(X) =
1
N

∑N
i=1 log p(x(i)). Notice that, in practice, these quantities can be com-

puted making use of the log-sum-exp trick for numerical stability.
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Earth mover’s distance When using a Wasserstein GAN, the model min-
imizes the earth mover’s distance (EMD). Therefore, we can use that value
as a measure of performance and also convergence. Recalling the EMD defi-
nition from Section 2.2, we instantiate it for the WGAN model as

EMD ≈ Ex∼pdata(x) [Dφ(x)]− Ez∼pz(z) [Dφ(Gθ(z))] , (3.11)

where it is an approximation since we do not compute the supremum but we
use directly Dφ. Notice that in practice, the expected values are computed
using Monte Carlo sampling with dimensionality equalling the size of the test
set when using pdata(x), an arbitrary number when using pz(z).

Average rescaled rewards When optimizing a model using reinforcement
learning, measuring rewards is a natural way to assess quality of resulting
models. The reward indicates how we either recompense or penalize a gen-
erative model based on the quality of generated samples. We measure and
average rewards at the end of the training of a generative model to compare
or to show how effectively it optimizes some metrics. Rewards are imple-
mented using chemical scores following Guimaraes et al. (2017). Similarly to
them, we rescale these scores to have signals ∈ [0, 1] where 0 indicates the
worst reward (e.g., used to indicate invalid compounds) and 1 indicates an
optimal one. In particular, we first define a rescaling function

remap(x, xmin, xmax) =
x− xmin

xmax − xmin
, (3.12)

and a clipping function clip(x) = max(min(x, 0), 1). Then, the rescaled re-
ward functions, based on scores defined in Section 3.6.3, are

druglikeliness = scoreQED , (3.13)
solubility = clip (remap(scorelogP ,−2.12, 6.04)) , (3.14)

synthesizability = clip (remap(scoreSA, 5, 1.5)) . (3.15)

The only score that is not rescaled is scoreQED which is already defined in
the interval [0, 1]. Other non chemical scores such as validity and uniqueness,
defined in Section 3.6.3, are not used as rewards. Besides, we also use novelty
as reward since in de novo drug discovery we are interested in unknown
compounds. When we combine rewards, the resulting signal is a product of
independent rewards.

3.6.3 Qualitative evaluation

As a qualitative evaluation of the generative process of a model, we mea-
sure two sets of metrics. The first indicates general properties of desirable
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convergence of a model. For that, we measure the following statistics as
defined in Samanta et al. (2018): validity, novelty, and uniqueness. Follow-
ing Guimaraes et al. (2017), the second set indicates chemical properties of
generated compounds which represent qualities typically desired for drug dis-
covery: the quantitative estimate of druglikeness, the octanol-water partition
coefficient, and the synthetic accessibility score. Additionally, when employ-
ing reinforcement learning, we use these metrics alone or in combination to
provide the reward signal to the generative model.

Validity score As defined in Samanta et al. (2018), the validity provides an
empirical score that evaluates to which degree a method generates chemically
valid molecules. It is a useful measure of performance since we would like
to guarantee methods to sample valid compounds as much as possible. Let
S = {s(i)}Ni=1 be a multiset (since it can contain duplicates) of sampled
molecules, and let v : S → {0, 1} be a function1 that assess whether a
molecule is valid (1) or not (0), then, the validity score is defined as

validityv(S) =
1

|S|

N∑
i=1

v(s(i)) . (3.16)

Moreover, in order to define the uniqueness score and novelty score, it is
useful to define the multiset of valid samples as D = {s : s ∈ S ∧ v(s) = 1}.
Note that validityv(S) ∈ [0, 1] but we consider more convenient to report it
in percentage. The individual validity score for molecules is used as a first
step when computing rewards since invalid molecular graphs do not map to
real molecules. Thus, we cannot compute any other reward.

Uniqueness score The uniqueness score indicates how much a generative
algorithm exploits diversity when sampling compounds. In particular, it is a
statistical estimator on how many molecules are unique among a sampled set.
High uniqueness score is desirable since we would like methods to generate
samples from a wide range of possibilities. Let D be the multiset of valid
samples as previously defined, the uniqueness score is then defined as

uniquenessv(D) =
|set(D)|
|D|

, (3.17)

where the function set(•) transforms a multiset into a set removing dupli-
cates. Note that uniquenessv(D) ∈ [0, 1] but we consider more convenient to
report it in percentage.

1We use the opensource cheminformatics suite RDkit (http://www.rdkit.org) to
check whether a generated molecules is chemically valid.

http://www.rdkit.org
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Novelty score Novelty is a desirable property in de novo drug discovery
since we would like to have methods able to generate sets of new unexplored
drugs. Therefore, following Samanta et al. (2018), we define the novelty score
as a statistical measure of the degree of how much an algorithm is able to
generate valid and novel molecules. Let X be the training set, and let D be
the set of valid samples as previously defined, then

noveltyv(D,X ) = 1− |set(D) ∩ X |
|set(D)|

, (3.18)

is the novelty. Note that noveltyv(D,X ) ∈ [0, 1] but we consider more conve-
nient to report it in percentage. Intuitively, since a generative model tries to
match the data distribution, some generated samples are similar or equal to
some data-points used for training. Thus, the novelty score approximately
indicates the proportion of generated compounds that are not in the dataset.

Quantitative estimate of druglikeness To quantify the quality of com-
pounds, Bickerton et al. (2012) applied the concept of desirability to develop
a quantitative metric for assessing druglikeness called the quantitative esti-
mate of druglikeness (QED). Desirability is quantified with multiple numeric
or categorical desirability functions, and it is measured on different scales.
Unlike rule-based metrics, these desirability functions capture the underlying
data distribution of several drug properties. In particular, they used eight
widely-used molecular properties: molecular weight, octanol-water partition
coefficient, number of hydrogen bond donors, number of hydrogen bond ac-
ceptors, molecular polar surface area, number of rotatable bonds, the number
of aromatic rings and number of structural alerts. The final QED score is then
computed as an aggregation of this set of measures as a weighted geometric
mean of individual scores. In this way, such a measure is more tolerated to
unfavorable properties when the value of other scores is high enough. QED
values can range between zero (all properties are undesired) and one (all
properties are desired). We show the distribution of this score in the QM9
dataset in Figure 3.8.

Octanol-water partition coefficient The octanol-water partition coef-
ficient (logP), is defined as the logarithm of the ratio of the concentrations
between two solvents of a solute (Comer and Tam, 2001). Usually, in pharma-
ceutical sciences, one of the solvents is water while the second is hydrophobic
such as 1-octanol. The octanol-water partition coefficient (logP) provides a
thermodynamic measure on how hydrophilic (water-loving) or hydrophobic
(water-hating) a chemical substance is (Sangster, 1997). The logP is useful
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Figure 3.8: Distribution of the quantitative estimate of druglikeness score in
QM9. The mean score is 0.46 with a std of 0.08.
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Figure 3.9: Distribution of the octanol-water partition coefficient in QM9.
The mean score is 0.14 with a std of 1.16.

while estimating the distribution of drugs within the body since hydrophobic
drugs (high logP) would mainly distribute to hydrophobic areas such as phos-
pholipid bilayers of cells while hydrophilic drugs (low logP) would concen-
trate mostly in aqueous regions (e.g., blood). This coefficient is widely used
in medicinal chemistry and drug design. In some works (Gómez-Bombarelli
et al., 2016; Kusner et al., 2017; Guimaraes et al., 2017), the logP is used



48 CHAPTER 3. METHOD

score

pr
ob

ab
ili
ty

de
ns
ity

Figure 3.10: Distribution of the synthetic accessibility score in QM9. The
mean score is 4.55 with a std of 1.22.

as a metric to be optimized since solubility is a desirable property of drugs.
The distribution of this score in the QM9 dataset is shown in Figure 3.9.

Synthetic accessibility score A de novo drug discovery process requires
an experimental validation of the synthesis of compounds. Compounds that
are easier to produce are more likely to be considered as possible candidates.
In the case of virtual exploration, there is the need of having a measure to
estimate the ease of synthesis before experimentation. Ertl and Schuffen-
hauer (2009) introduced a method to estimate this ease of synthesis called
the synthetic accessibility score (SAS). The SAS is based upon a combina-
tion of fragment contributions but also a complexity penalty. Fragments
have been extracted from PubChem2, a public compounds database. Their
contributions have been computed based on the analysis of one million of al-
ready synthesized chemicals, therefore, capturing historical knowledge about
the difficulty of their synthesization. The SAS is calculated as a sum of
contributions of all fragments in the molecule divided by the total number
of fragments. Then, the molecular complexity penalty takes into account
the presence of non-standard structural features, such as large rings, non-
standard ring fusions, stereocomplexity, and molecular size. This score relies
on the range from 1 (easy to synthesize) and 10 (very difficult to synthesize).
The distribution of this score in the QM9 dataset is shown in Figure 3.10.

2https://pubchem.ncbi.nlm.nih.gov

https://pubchem.ncbi.nlm.nih.gov


Chapter 4

Related work

Here we present some work related to ours. We present both variational and
adversarial approaches similar to the one we use. Moreover, we will cover
both other generative approaches for molecular generation and some of the
literature on the use of neural networks within graphs.

Reinforcement learning for molecular design Molecular generation
and synthesization are widely approached from many angles by the machine
learning community. For instance, Segler et al. (2018) showed how to com-
bine Monte Carlo tree search (MCTS) with reinforcement learning planning
chemical syntheses from well-known compounds.

GAN and RL combination Objective-Reinforced Generative Adversar-
ial Networks (ORGAN) by Guimaraes et al. (2017) is probably the most
related work to ours. Their model relies on SeqGAN (Yu et al., 2017) to
adversarially learn to output sequences while optimizing towards chemical
metrics. SeqGAN is applied to generate SMILES sequences that resemble
molecular data. They additionally optimize the generative process using
REINFORCE (Williams, 1992) towards desirable chemical properties such as
the quantitative estimate of druglikeness (QED), the synthetic accessibility
score (SAS), and the octanol-water partition coefficient (logP) (see Section
3.6.3). ORGAN also explored the use of Wasserstein GANs (WGANs).

(W)GAN variations As we mention in Section 3.4, we employed WGAN
with gradient penalty (WGAN-GP) (Gulrajani et al., 2017). Wei et al. (2018)
showed further techniques to improve the training of WGANs. Moreover,
Nowozin et al. (2016) showed that GAN approach is a special case of an ex-
isting and more general variational divergence estimation approach proposing

49
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a series of alternative adversarial objectives to optimize. Boundary-seeking
generative adversarial network (Hjelm et al., 2018) is an attempt to use GANs
with discrete data that uses a gradient estimation similar to a policy gradi-
ent for training the generator. Note that some works have been proposed
for gradient estimators of discrete variables. Both Tucker et al. (2017) and
Grathwohl et al. (2018) provided a more sophisticated and accurate estima-
tion of the gradient from a categorical sampling than straight through or
the Gumbel-Softmax trick (Jang et al., 2017). Their works aim at providing
unbiased and low variance gradient estimators.

Notice that some work has also been done towards the combination
of variational approaches with adversarial learning (Dumoulin et al., 2017;
Mescheder et al., 2017; Rosca et al., 2017). These methods address problems
such as intractable density for variational Bayes using adversarial/implicit
models.

VAEs with SMILES Several approaches that address de novo drug de-
sign follow the line of using SMILES strings as a representation for molecules.
CharacterVAE by Gómez-Bombarelli et al. (2016) proposed one of the first
attempt of generating compounds using variational auto-encoders. They
used the character based SMILES representations in combination with RNNs.
GrammarVAE (Kusner et al., 2017) is a more advanced approach that over-
comes the complexity of learning a syntax constraining the output to be a
string generated from a context-free grammar (CFG). They propose a varia-
tional approach which encodes and decodes directly to and from parse trees
and they applied it to both arithmetic expressions and molecular structures.
On the same line, syntax-directed variational auto-encoder (SD-VAE) by
(Dai et al., 2018) restricted the language space of operation. In this way,
they managed to generate both programs and molecules not only syntacti-
cally valid but also semantically.

Graph Convolution Networks Another line of research consists of train-
ing deep models that work with graph-structured data directly. The work by
Scarselli et al. (2009) was one of the first of proposing a combination of neu-
ral networks on graph structures. Li et al. (2016) developed a class of neural
network models that uses graph-structured inputs in combination with gated
recurrent units to output sequences.

Several works utilized graph convolution networks (GCNs) in combination
with VAEs for link prediction within graphs (Kipf and Welling, 2016; Grover
et al., 2017; Davidson et al., 2018). These models use a node level embedding
to encode topological information of the graph and use that to predict links.
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Differently, Johnson (2017); Li et al. (2018a); You et al. (2018); Li et al.
(2018b) employed likelihood-based methods to learn generative models for
graphs of arbitrary size using recurrent models. Johnson (2017) introduced
the Gated Graph Transformer Neural Network (GGT-NN) as an extension
of the Gated Graph Sequence Neural Network (GGS-NN) (Li et al., 2016).
Their model can learn to construct and modify a graph through subsequent
steps based on a textual input. GraphRNN (You et al., 2018) and the model
proposed by Li et al. (2018a) learn to generate graphs by decomposing the
generation process into a sequence of node, and edge additions, conditioned
on the structure created so far. Starting with an empty molecular graph, Li
et al. (2018b) also modeled graph transition (append node, connect nodes
or the terminate process) modeling probability distribution with neural net-
works on these actions. At each step, they conditioned the generation not
only on previous steps but also on chemical objectives including the genera-
tion of compounds containing a given scaffold.

Recent work by Velickovic et al. (2018) proposed an extension of the
GCN framework that predict attentions over neighbour contributions. An-
other contemporary work (Battaglia et al., 2018) extensively analyses and
discuss GCN in combination with relational inductive biases. Neural Rela-
tional Inference (Kipf et al., 2018) showed how an unsupervised graph-based
model could learn an infer interactions from a dynamical system only from
observational data.

VAEs with graphs Within the chemistry domain, graph-based methods
were proved to be useful in many tasks. Neural message passing (Gilmer
et al., 2017) used graph-based neural models within quantum chemistry
to predict molecular fingerprints. GraphVAE (Simonovsky and Komodakis,
2018) uses a very similar approach to ours to encode and decode graphs di-
rectly within a VAE setting. They used edge conditioned convolution (ECC)
(Simonovsky and Komodakis, 2017) to propagate information in a graph
while conditioning on edges. Junction Tree VAE (Jin et al., 2018) extends
the GraphVAE approach with a dual tree-structured representation. They
aim to capture the complexity of molecular graphs learning a higher level
tree representation of them. NeVAE by (Samanta et al., 2018), was shown
to learn a generative process for graphs imitating random graph models and
overcoming the issue of graph isomorphism under permutation of the nodes.
However, this method samples a number of node embeddings where we sam-
ple a single graph-level vector directly.
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Chapter 5

Experiments

In this section, we present a series of experiments to analyze the behavior of
different model variants for molecular graph generation. For each of them, we
report an experimental setup followed with results and visual representations
when needed. In Section 5.2, we investigate variational auto-encoders only
whereas in Section 5.3 we study their combination with reinforcement learn-
ing. We aim to observe models behavior in the presence of additional atom
features, with different latent space dimensionalities, and different decoding
functions. Similarly, we present molecular graph generative adversarial net-
works experiments in Section 5.4 and their combination with reinforcement
learning in Section 5.5. When studying both approaches in combination with
RL, we focus on the efficacy of the introduced bias, and the effect of the pa-
rameter that controls the trade-off between the generative objective and the
RL component. In Section, 5.6 we analyze overall results from both VAEs,
GANs, and their combination with reinforcement learning.

5.1 Shared setup

For all experiments on both VAEs and GANs, we run our models for 500
epochs, on the QM9 dataset (see Section 3.6.1) using minibatches of size 128.
Molecules are represented using a fixed canonical order of atoms (similar to
SMILES). We optimize these models using the Adam optimizer (Kingma and
Ba, 2014) with a learning rate of 10−3.

Encoder and discriminator The encoder eφ and the discriminator Dφ

share most of the architectural design. They both use a 2-layered R-GCN of
dimensionalities [128, 64] to process the graph, followed by an aggregation
operation with dimensionality 128, as described in Equation 3.5, to have a
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graph-level vector representation. Subsequently, this vector is processed by
a 2-layered MLP of dimensionalities [128, 64]. The last layer of Dφ consists
of an affine transformation R64 → R. Instead, the last layer of eφ consists
of two affine transformations, which depend on the dimensionality of the
latent space Z, that output the mean µG and the diagonal of covariance
σG respectively. All nonlinearities between layers in both the encoder and
discriminator networks are tanh functions.

Decoder and generator Similarly, also the decoder dθ and the generator
Gθ share the same architecture. Notice that they do not share parameters.
We use different architectures and number of parameters depending on the
type of decoding function used (see Section 3.2.2). We choose the size of
hidden layers to have the total number of parameters of all three decoders as
equal as possible to avoid unfair comparisons. For instance, an RNN might
outperform simpler methods with more parameters, but in that case, it would
be erroneous to claim that such RNN is a better model without considering
the number of parameters.

The direct prediction decoding uses a 3-layered MLP of dimensionalities
[128, 256, 512] followed by two linear maps to match the size of the annotation
matrix X and the adjacency tensor A respectively. The dot-product decoding
consists a 2-layered MLP of dimensionalities [128, 256] followed by a linear
map to predict X, and a linear map to predict the intermediate tensor Z
with K = 32. Subsequently, the adjacency tensor A is A = softmax(ZZ>).

The recurrent decoding is implemented using a 2-layered MLP of di-
mensionalities [128, 256] followed by two long short term memory (LSTM)
(Hochreiter and Schmidhuber, 1997) networks that predict the annotation
matrix and the adjacency tensor respectively. The LSTM cell used to output
X has a hidden layer of 128 units, and it is followed by an affine transfor-
mation R128 → R|XV | to predict node types. Also, the LSTM cell used to
output A has a hidden layer of dimensionality 128, and it is followed by a
linear map to predict the intermediate tensor Z with K = 32. Similarly to
the dot-product decoding, A = softmax(ZZ>). Nonlinearities between layers
in all decoder/generator variations are tanh functions, and the last ones are
softmax functions.

5.2 Variational Auto-Encoders

In this section, we describe a sequence of experiments to analyze the behavior
of several variations of molecular graph VAEs. For all experiments, we train
using settings and model architectures as described above. Additionally, we
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evaluate the model every 10 epochs, and we estimate the log-likelihood on
the test set with importance sampling using 500 samples per data-point.

We first show how models perform when adding additional atom features.
Subsequently, we compare performance of different decoding functions (as
explained in Section 3.2) as well as different latent space dimensionalities.
We also analyze the quality of our models plotting a latent space visualization
of an R2 model as well as showing interpolations between samples.

5.2.1 Additional features

In this experiment, we want to investigate the effect of adding additional fea-
tures as an input to a VAE. As we previously discussed in Section 3.1, it is not
straightforward to include additional information like molecular properties in
the kind of graph generative models we are using. For instance, if one prop-
erty is being in a ring, when predicted, it would be problematic to combine
it with the predictions of the edges. Indeed, the model should output both
correctly, or otherwise, there would be inconsistencies. However, in the case
of VAEs, we can append additional atom features when feeding the encoder
without requiring the decoder to predict them. As atom features, we use the
number of neighbors, the explicit and implicit valence, the hybridization, the
number of explicit and implicit hydrogens, the number of radical electrons,
whether it is in a ring, and the size of the ring when available. We expect
that models will benefit of such features having a lower reconstruction error.

We test out hypothesis running a series of VAE variations. In particular,
we fix the latent space size to d = 8, and we run models with and without
additional features also varying the decoding function. As a comparison
measure, we use the log-likelihood on the test set (see Section 3.6.2). We
measure the validity, uniqueness, and novelty scores with a sample size of 1k.

Results In Table 5.1 we show results of the additional features experiment.
As expected, all of the three models that use additional atom information
outperform the one without in term of log-likelihood on the test set. We
notice that the main advantage is due to a lower reconstruction error. Con-
versely, the KL is slightly higher than the one without features of one or
two nats. It seems that with these features, all models can reconstruct the
samples better, having more information about the molecular structure, but
this cost in terms of KL. The additional features seem to affect neither the
uniqueness score nor the novelty score. However, using these features in-
creases the number of valid molecules in a random sample which empirically
demonstrates that the latent space structure is slightly better.



56 CHAPTER 5. EXPERIMENTS

Method no features
LL ELBO r. loss KL validity uni. novelty

direct -24.10 -25.86 18.21 7.65 52.30 100.00 71.30
dot-product -23.93 -26.11 18.28 7.82 48.20 99.38 75.70
recurrent -23.52 -25.24 17.16 8.08 52.50 99.62 79.81

Method features
LL ELBO r. loss KL validity uni. novelty

direct -20.51 -22.27 13.27 9.00 62.50 99.84 70.88
dot-product -19.95 -22.58 12.88 9.70 56.20 100.00 75.09
recurrent -19.61 -21.81 11.87 9.94 60.00 99.67 71.00

Table 5.1: Analysis on the use of additional atom features in VAEs. All
measures are computed on the test set using a VAE with d = 8 and direct
decoding. LL stands for log-likelihood, r. loss stand for reconstruction loss,
and uni. stands for uniqueness. Validity, uniqueness, and novelty scores are
computed with a sample size of 1k. We highlight scores when they are better
than the respective counterpart. We do not highlight the uniqueness score
since it is not relevant (always ≈ 100%).

The uniqueness score is always high and approaching 100%. This behavior
can be well explained since the VAE objective makes the model to matches
the data distribution. Data, i.e. molecules, are embedded in the latent
space and spread around the origin (due to the variational loss). Therefore,
different parts of the latent space map to different molecular outputs. For
the subsequent experiments, we then use VAEs with additional molecular
features leading to an overhead of 10% in the parameter space based on the
architectural choice stated at the beginning of this section.

5.2.2 Dimensionality and decoding functions

In this experiment, we want to show the effects on performance of both the
latent space dimension and the type of decoding function employed. We use
results from the previous experiment to choose whether to include features or
not. We investigate d ∈ {2, 4, 8, 16, 32, 64} using the log-likelihood on the test
set as a comparison measure. We use the three type of decoding as described
in Section 3.2.2. We measure validity, uniqueness, and novelty scores with a
sample size of 1k. In this setting, we do not have a strong hypothesis on the
results. We do not expect any particular decoding function or dimension to
outperform the others.
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Method direct decoding
LL ELBO r. loss KL validity unique. novelty

d = 2 -22.80 -24.05 17.30 6.75 55.90 99.64 78.71
d = 4 -22.81 -24.07 17.04 7.03 55.20 100.00 73.55
d = 8 -20.51 -22.27 13.27 9.00 64.50 99.84 70.88
d = 16 -20.78 -22.54 13.58 8.96 60.80 99.84 69.90
d = 32 -20.84 -22.61 14.01 8.60 61.40 99.66 69.02
d = 64 -21.01 -22.79 14.08 8.71 60.20 99.66 67.57

Method dot-product decoding
LL ELBO r. loss KL validity unique. novelty

d = 2 -23.22 -24.48 17.95 6.53 49.10 100.00 79.63
d = 4 -21.03 -23.25 14.09 9.16 57.20 99.65 74.30
d = 8 -19.75 -22.58 12.88 9.70 56.20 100.00 75.09
d = 16 -19.99 -22.63 12.86 9.77 56.80 99.82 73.59
d = 32 -19.49 -22.48 12.15 10.33 56.60 99.82 67.84
d = 64 -19.65 -22.66 12.39 10.26 56.10 100.00 75.22

Method recurrent decoding
LL ELBO r. loss KL validity unique. novelty

d = 2 -21.80 -23.06 15.74 7.32 56.60 100.00 73.50
d = 4 -20.33 -22.07 13.17 8.90 59.60 99.50 65.44
d = 8 -19.61 -21.81 11.87 9.94 60.00 99.67 71.00
d = 16 -19.29 -21.49 11.70 9.79 65.40 99.85 69.27
d = 32 -19.46 -21.67 11.65 10.02 62.50 99.52 69.44
d = 64 -22.38 -23.97 16.55 7.42 55.40 100.00 72.56

Table 5.2: Comparison of different latent space dimensionalities and decoding
functions in a VAE setting with additional features. We highlight the best
scores for each decoding function. r. loss stands for reconstruction loss
where unique. stands for uniqueness. We do not highlight the uniqueness
score since it is not relevant (always ≈ 100%).

Results In Table 5.2 we show results of the dimensionality and decoding
functions comparison experiment. Similarly to the previous experiment, we
notice that the uniqueness score is quite close to 100% in every setting. In
terms of validity scores, direct decoding models have 5-10% higher scores
than the dot-product decoding models. This difference is instead minimal
compared to recurrent models. On average, dot-product decoding generates
slightly more novel compounds comparing to other decodings.
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In terms of log-likelihood on the test set, we notice that dot-product de-
coding and recurrent decoding models achieve higher values than the direct
decoding ones. It may be that these two decoders learn better the information
about edges. In particular, when learning, both these models have to encode
in some way into intermediate hidden vectors the relation between nodes.
Instead, in direct decoding models, these relations are implicit and encoded
in an overall graph representation which is encoded in one step. Moreover,
in the recurrent model, predictions are more explicitly conditioned on the
previous ones.

Recurrent models outperform the others in terms of reconstruction loss.
These values are almost always one nat lower than dot-product models and
two nats lower that direct decoding models. They also have comparable KL
values to the dot-product models but higher than the direct decoding models.
Notice that this leads to higher ELBO values compared to the other two
settings in almost all recurrent model. However, a better ELBO does not
always correspond to better log-likelihood (Rainforth et al., 2018). Indeed,
even though recurrent models have a better ELBO, they have comparable
log-likelihood values comparing to the dot-product decoding ones. Notice
that in high dimensions, i.e. d = 64, the recurrent VAEs do not achieve good
convergence. Direct decoding models have worse reconstruction losses than
the other decodings, but they have lower KL values. In fact, they result in
having comparable ELBO values with dot-product models.

When observing the effects of the latent space dimensionality, we see that
lower dimensions (d = 2 and d = 4) perform poorly compared to higher ones.
This behavior is unsurprising since the encoder is forced to compress all the
information in a smaller representation, and the decoder to learn from it.
Conversely, we do not notice benefits of using dimensions higher than d = 8.
Indeed, unlike classic auto-encoders, variational auto-encoders not always
benefit from higher embedding dimensions since there is also the constraint
of matching a prior distribution.

In Figures 5.1 and 5.2, we show the evolution during training of the ELBO
and the reconstruction loss respectively of direct decoding models. From these
plots, we see that all models converged since values on the last 100 epochs
remain almost unchanged and steadily around the same value. Besides, as
previously observed, we can see how lower dimensions perform worse than
higher and that d = 8 outperforms d > 8.

Interpolations In Figure 5.3, we report an interpolation between two ran-
dom molecules using a VAE with d = 8 and direct decoding. Since the space
of graphs is discrete, it is not possible to have smooth transitions. Besides
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Figure 5.1: Comparison of ELBO during training of VAEs with direct decod-
ing of different latent space dimensions. Notice that higher dimensionality
does not always correspond to a higher ELBO.
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Figure 5.2: Comparison of reconstruction loss during training of VAEs with
direct decoding of different latent space dimensions. Notice that higher di-
mensionality does not always correspond to a lower reconstruction loss.

that, we notice that close molecules tend to be similar to each other as ex-
pected. Indeed, close molecules share structural properties. Not all points in
the latent space map to molecular graphs and therefore some point between
two molecules is missing. This interpolation presets several discontinuities.

Reconstructions In Figure A.1, we plot reconstructions of samples from
the test set. For this plot we used a VAE with d = 32 and recurrent decoding
since it is the model with lower reconstruction error. The ability of perfectly
reconstructing original samples is desirable but unfortunately extremely hard
to achieve. However, from many compounds, the VAE is able to output
almost the same structure as the input. It is remarkable that, even when the
reconstruction is not correct, the output is still a valid molecule.

Latent space In Figure A.2, we show how the latent space looks like in a
model trained with an embedding dimensionality of 2. For this plot, we use
a recurrent model since it is the one with the lowest reconstruction error. We
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Figure 5.3: Interpolations from two random samples (inside the blue squares)
using a VAE with d = 8 and direct prediction model. Notice that close
molecules tend to be similar to each other. A blank spot indicates that the
model outputs an invalid molecular graph from that point of the latent space.

take samples using a symmetric grid 1 × 1 centered at the origin. Similarly
to the interpolation plot, also here not all points map to valid molecules.
Moreover, transitions an neighbour similarity are more clear. Most of the
compounds have a similar one nearby. This property was expected since it
naturally appears with the use of variational auto-encoders.

5.3 VAEs with reinforcement learning

In this section, we study the effects of combining VAEs with reinforcement
learning. First we discuss the effect of the hyperparameter λ which regulates
the trade-off between the VAE and RL losses. We also study the effect of
different ways to forward the outputs of a VAE (as we discussed in 3.2).

For all experiments, similarly to Guimaraes et al. (2017), we start from
pre-trained VAE models and then we fine-tune them training using a rein-
forcement learning objective for further epochs. At early stages of experimen-
tation, we observed that non pre-trained models collapse immediately. They
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successfully optimize metrics presented very high scores, but the uniqueness
approached zero (i.e., they converged outputting very few samples). Indeed,
the reinforcement learning objective does not optimize towards having mul-
tiple molecular graphs as outputs. Therefore, there is no constraint to the
model in having any degree of diversity in the output. This behavior may
indicate that pre-training is fundamental for matching the data distribution
before using RL. In this way, we can see the pre-training as a regularizer for
the latent space diversity.

For these experiments, we use a pre-trained VAE with d = 8 and direct
decoding, and we further train for 200 epochs. The reward network (see Sec-
tion 3.5) is implemented using a 2-layered R-GCN of dimensionalities [128,
64] to process the graph, followed by an aggregation operation of dimen-
sionality 128. Subsequently, this vector is processed by a 3-layered MLP of
dimensionalities [128, 64, 1] resulting in a scalar value that denotes the pre-
dicted reward. Nonlinearities between layers are tanh, and the last ones is a
sigmoid function since we normalized all rewards to be ∈ [0, 1] (see Section
3.6.2). To speed up training and avoid vanishing gradients, we train the
reward networks every 5 decoder updates.

5.3.1 The effect of λ

As previously discussed in Section 3.5, we can train our models using a linear
combination (with λ as parameter) between the VAE and RL losses. We
hypothesize that lower λ values, i.e. the RL loss contributes more, should lead
to models that output several molecules with desirable properties. However,
these models might collapse since the RL loss does not guarantee the model
to outputs samples that resemble the data distribution. Conversely, higher λ
values might not have any effects on optimizing towards chemical objectives.

At early stage of this work, we investigated λ ∈ {0, 0.125, 0.25, 0.375, 0.5,
0.625, 0.75, 0.825, 1} to evaluate our hypothesis. Unfortunately, we notice
that the RL objective does not work well combined with the VAE one. In
particular, it seems that any combination of the two losses, i.e., λ ∈ (0, 1),
results in collapsed models (i.e., very high ELBO and very low validity and re-
ward scores). We hypothesize that the RL objective cannot be easily used in
combination with the reconstruction loss. Indeed, the former pushes towards
sampling molecules with some property when the latter penalizes samples
not reconstructed correctly. During training, when the RL component acts
updating the decoder to output molecules that maximize a reward, the re-
construction error is not minimized at all. Indeed, it appears that during
training, the model cannot find an acceptable balance between these two
losses, and therefore, it collapses.
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Method validity uniqueness novelty logP SAS QED

baseline 64.50 99.84 70.88 0.21 0.32 0.46

no
threshold

soft 96.50 1.35 99.90 0.66 0.67 0.40
noise 97.40 1.23 99.90 0.69 0.83 0.39
GS 99.90 3.10 99.70 0.69 0.89 0.38

threshold
uniqueness
> 5%

soft 93.20 5.11 99.35 0.62 0.66 0.46
noise 98.50 6.70 100.00 0.61 0.65 0.45
GS 96.70 5.58 99.79 0.68 0.87 0.38

(a) Optimizing the octanol-water partition coefficient (logP).

Method validity uniqueness novelty logP SAS QED

baseline 64.50 99.84 70.88 0.21 0.32 0.46

no
threshold

soft 93.00 4.95 98.82 0.49 0.97 0.52
noise 97.60 1.74 99.90 0.50 0.96 0.49
GS 92.60 6.37 99.03 0.47 0.91 0.55

threshold
uniqueness
> 5%

soft 91.50 6.23 98.47 0.50 0.95 0.53
noise 98.10 6.05 99.90 0.50 0.92 0.54
GS 92.60 6.37 99.03 0.47 0.91 0.55

(b) Optimizing the synthetic accessibility score (SAS).

Method validity uniqueness novelty logP SAS QED

baseline 64.50 99.84 70.88 0.21 0.32 0.46

no
threshold

soft 94.13 1.83 99.58 0.48 0.62 0.60
noise 92.80 3.88 99.78 0.46 0.30 0.60
GS 92.10 3.26 99.78 0.39 0.13 0.56

threshold
uniqueness
> 5%

soft 92.62 5.36 99.27 0.47 0.60 0.60
noise 91.50 8.63 98.91 0.49 0.56 0.60
GS 91.70 5.13 99.89 0.40 0.20 0.56

(c) Optimizing the quantitative estimate of druglikeness (QED).

Table 5.3: Different types of feeding the reward network from a VAE. Soft
denotes feeding directly with the continuous X and A, noise indicates we
applied Gumbel noise to X and A, and GS stands for the use of the Gumbel-
Softmax trick. Here we used λ = 0 with d = 8 and direct decoder. We also
show how these scores changes when we apply early stopping with a threshold
on the uniqueness. Shaded cell denotes which metric is direct optimized.
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5.3.2 Forwarding X and A

In this experiment, we evaluate three different approaches, as previously dis-
cussed in Section 3.2, that acts between the output of the generation process
and the input of the reward network. These methods take both the an-
notation matrix X and adjacency tensor A and further process them. In
particular, they either i) directly feed them into the reward network, we
call it soft approach, ii) apply Gumbel noise to them, which is equivalent
of using a stochastic behavioral policy, or iii) use the Gumbel-Softmax Trick
(Jang et al., 2017). We train these methods using λ = 0 (otherwise the
model collapses as previously described), evaluating the average rewards ev-
ery 5 epochs. We also employed early stopping using the uniqueness score for
which we set an arbitrary threshold of being >5%. Otherwise, we consider
the model to be collapsed. We optimize towards novelty and another score
in three different settings: the octanol-water partition coefficient (logP), the
synthetic accessibility score (SAS), and the quantitative estimate of drug-
likeness (QED). During validation and test, we measure rewards as well as
the validity and uniqueness scores with a sample size of 1k (see Section 3.6).
We then evaluate the variations as mentioned above using these metrics.

Results In Table 5.3 we show how different forwarding approaches affect
scores. No clear pattern indicates that one of the three forwarding methods
(i.e., soft approach, Gumbel noise, and Gumbel-Softmax) is better than the
others. Besides that, we can observe two general trends: i) the RL component
effectively influence models to generate molecules with desired properties,
and ii) models tend to collapse generating few various molecules.

Shaded cells in Table 5.3 denote which scores are direct optimized. From
them, we can observe that they are always higher then the baseline which is
the VAE without any RL optimization. This trend is expected and indicates
that reinforcement learning is useful to optimize towards metrics. We observe
a clear trend towards very high validity score as well. This is likely due to
the implicit optimization of valid molecules since invalid ones receive zero
reward during training. Therefore, the generator is optimized to generate
mostly valid molecular graphs. Novelty score approaches 100% in all settings
showing that the model can generalize and learn to output molecules that
are not in the training set.

We observe low uniqueness scores in all settings that seems to indicate
that models tend to collapse generating only a few samples. Notice that, we
set an arbitrary threshold on uniqueness score beyond which we consider a
model to be collapsed. Thus, we report results when we either stop training
after reaching the threshold or when we keep training regardless. Scores
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of collapsed models are not always higher than non collapsed one. Both
rewards and validity scores are slightly worse in non collapsed models but
never too distant from the collapsed one. This indicated that employing early
stopping is useful to avoid undesired behavior and does not compromise the
performance of the models.

5.4 Generative Adversarial Networks

In this section, we describe a sequence of experiments to analyze the behav-
ior of several variations of molecular graph GANs. For all experiments on
GANs, we employ the WGAN with gradient penalty (WGAN-GP), a more
stable variation of generative adversarial network (see Section 2.2). We train
WGAN-GP models using settings and architectures as described in Section
5.1. Additionally, we estimate the earth mover’s distance using all data-point
from the test set and the same amount of samples from the generator. Notice
that, for simplicity, we will often refer WGAN-GP as WGAN.

We first investigate the use of mini-batch discrimination and feature
matching. Subsequently, we compare performance of different decoding func-
tions (as explained in Section 3.2) as well as different latent space dimen-
sionalities. We also analyze the quality of our models plotting a latent space
visualization of an R2 model.

5.4.1 Feature matching and mini-batch discrimination

As introduced in Section 2.2, in a GAN setting, both feature matching, and
mini-batch discrimination are techniques that prevent models from collaps-
ing modes. This experiment is motivated by early stages of work when we
observed that our standard GAN and WGANmodels were prone to collapse.
Thus, we study the effect of these methods and their combination within
our molecular graph GAN. We use feature matching on the last hidden layer
of the discriminator. When using mini-batch discrimination, we added an
extra component to our model. A 1-layered MLP, with hidden dimensions
8, transforms the output from the R-GCN module. Subsequently, we take
the average of these representations are to have a minibatch-level vector. We
then append this vector to all intermediate representations of the minibatch
in the last hidden layer of the discriminator.

Additionally, as for VAEs, we investigate the effect of using either a soft
forward of the annotation matrix X and adjacency tensor A, or adding Gum-
bel noise to them, or employing the Gumbel-Softmax trick. For this exper-
iment we use a WGAN with dimensionality d = 8 and direct decoding. To



5.4. GENERATIVE ADVERSARIAL NETWORKS 65

Method no feature matching feature matching
validity uni. novelty validity uni. novelty

no minib.
discrim.

soft 77.40 20.32 63.70 83.40 75.30 63.91
noise 77.20 12.86 68.52 87.90 79.64 65.75
GS 77.70 16.99 94.21 95.30 7.87 86.78

minib.
discrim.

soft 89.20 67.71 66.82 93.20 42.49 67.81
noise 89.40 63.87 65.21 85.80 60.72 65.38
GS 95.80 17.12 83.09 72.10 7.77 93.48

Table 5.4: Comparisons between WGAN models that uses or not use mini-
batch discrimination and/or feature matching. Models have d = 8 and direct
decoding. We explore soft forward, Gumbel noise and Gumbel-Softmax (GS)
that act between the generator and the discriminator. unique. stands for
uniqueness where minib. discrim. stands for minibatch discriminator. We
highlight the best result for each combination between mini-batch discrim-
ination and feature matching. We underline results of the model with the
highest sum of scores.

make a comparison, we measure validity, uniqueness, and novelty, and we
take the sum of these scores to pick the best setting for further use in other
experiments. We additionally employ model selection using the maximum
score during training, evaluating the sum of these scores every 10 epochs.

Results From experimental results, which we show in Table 5.4, we ob-
served that the best setting is the combination of feature matching while
forwarding X and A adding Gumbel noise. This setting has the maximum
sum of validity, uniqueness and novelty scores. Thus, we select this model
for further experiments.

Additionally, even though we employ early stopping for model selection,
we inspect the behavior of these models after that point. Surprisingly, most
of the models eventually collapse before reaching the end of the training.
In particular, it seems that the Gumbel-Softmax is quite unstable. We re-
ran multiple instances of these experiments, and every time these models
collapsed. Indeed, all settings that employ the Gumbel-Softmax tick failed
to reach the final epoch of the training without collapsing.

Besides, we observe that both feature matching and mini-batch discrim-
ination prevent collapsing reaching good results. Overall, we do not observe
a big gap between using one technique, or the other, or the combination of
the two. However, using feature matching only with Gumbel noise results to
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be the best setting with respect to our predefined criteria. It is not clear why
their combination does not outperform the single use of these techniques.
We decided to do not explore more in details this direction, and we will leave
this for future work.

5.4.2 Dimensionality and decoding functions

In this experiment, we want to show the effects on performance of both the
latent space dimension and the type of decoding function employed. We
use results from the previous experiment to choose whether to use feature
matching and/or mini-batch discrimination as well as which kind of forward-
ing approach. We investigate d ∈ {2, 4, 8, 16, 32, 64} using comparison mea-
sures such as the earth mover’s distance on the test set, as well as validity,
uniqueness, and novelty scores calculated as an average from a sample size
of 1k.

Additionally, we also explore the three type of decoding as described
in Section 3.2.2. After having explored experimental results from VAEs, we
expect similar results on GANs namely i) higher dimension are not necessarily
better, and ii) dot-product and recurrent decodings should perform slightly
better than the direct decoding.

Results Results from this experiment are reported in Table 5.5. Two trends
emerge: i) direct decoding seems to be slightly better than other decodings in
capturing the data distribution and in generating valid molecular graphs, and
ii) in high dimensions the dot-product decoder does not perform well. Notice
that, we employ feature matching with Gumbel noise in these experiments
(as a result of model selection from the previous experiment).

Results from direct decoding indicates that, within our WGAN settings,
it is the best decoding function. Indeed, when using direct decoding, most of
the dimensionalities present a validity score >85% where they are approxi-
mately <70% using the dot-product decoder and approximately <80% using
the recurrent decoder. Moreover, direct decoding models present a higher
earth mover’s distance (EMD) indicating that they tend to match the data
distribution better. This behavior is also evident from the novelty score that
is much lower than the other decodings. Less novelty indicates that the
models also learn to replicate some of the original data.

Models with dot-product and recurrent decoding performed worse in term
of both EMD and validity. In particular, it seems that dot-product is not well
suited for high dimensions, resulting in very low validity scores. Additionally,
in all three decoding settings, we observe that lower dimension (e.g., d = 2
or d = 4) have a worse uniqueness score. It seems that, in low dimensional
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Method direct decoding
validity uniqueness novelty EMD

d = 2 71.50 21.40 59.72 -155.83
d = 4 85.90 33.22 64.38 -121.42
d = 8 88.40 40.50 60.36 -128.92
d = 16 94.10 51.56 56.85 -99.34
d = 32 90.10 63.91 62.42 -98.28
d = 64 89.00 55.51 57.87 -96.41

Method dot-product decoding
validity uniqueness novelty EMD

d = 2 66.20 9.67 93.81 -177.31
d = 4 72.00 19.17 98.06 -157.59
d = 8 64.90 53.31 95.38 -161.62
d = 16 39.60 63.38 96.21 -229.12
d = 32 11.30 80.53 88.50 -225.52
d = 64 12.50 68.80 96.00 -176.31

Method recurrent decoding
validity uniqueness novelty EMD

d = 2 53.90 12.57 99.55 -174.63
d = 4 69.30 10.39 100.00 -232.09
d = 8 59.20 67.57 90.03 -156.24
d = 16 52.50 34.48 100.00 -278.16
d = 32 80.30 45.95 99.50 -202.13
d = 64 53.80 42.94 95.72 -238.47

Table 5.5: Comparison of different latent space dimensionalities and decoding
functions in a WGAN setting with feature matching. We highlight the best
scores for each decoding function.

spaces, the generator fails to learn a large set of different transformation, but
instead it converges outputting only a few samples.

In Figure A.3, we show how the latent space looks like in a model trained
with an embedding dimensionality of 2. For this plot, we use a direct pre-
diction decoding since it is the one with the highest validity score. We take
samples using a symmetric grid 2× 2 centered at the origin. Similarly to the
latent space of a VAE, also here not all points map to valid molecules and
most of the compounds have a similar one nearby. Differently from a VAE, it
is evident that the models learns to output less compounds (lower diversity).
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5.5 GANs with reinforcement learning

In this section, we study the effects of combining WGANs with reinforcement
learning. We first study the effect of the hyperparameter λ which regulates
the trade-off between the WGAN and RL losses. Similarly to the experiments
on VAEs with RL, we start from pre-trained WGAN models and we fine-tune
them training using a reinforcement learning objective for further epochs. We
make this choice for the same reasons previously explained in Section 5.3.
Similarly to Section 5.3, we also optimize towards novelty and a single score
in three different settings: the logP, the SAS, and the QED (as explained in
Section 3.6.3 and defined in Section 3.5).

For these experiments, we use a pre-trained feature matching WGAN
with d = 32 and direct decoding and Gumbel noise, further training for
200 epochs. Additionally, we use the same reward network architecture and
hidden dimensions as described for the VAEs models in Section 5.3. To speed
up training and avoid vanishing gradients, we train the reward networks every
5 decoder updates (similar to the ncritic in Goodfellow et al. (2014)).

5.5.1 The effect of λ

Differently from the combination between VAEs and reinforcement learning,
we observed that varying the λ parameter (i.e., the trade-off between the
WGAN and RL losses) does not present undesired collapsing behaviors. We
hypothesize that within GAN models, the reinforcement learning objective
does not contrast the generative objective since does not include any re-
construction loss. Therefore, they can be optimized together with different
weights assigned to one or the other (i.e., controlling λ).

In this experiment, we then expect λ to be negatively correlated with
the reward since low λ values correspond to high contribution from the RL
loss. Conversely, higher λ values might not have any effects on optimizing
the model towards chemical objectives. Thus, we also expect λ to be posi-
tively correlated with the uniqueness score since high λ values corresponds
to optimize towards matching the data distribution more (since most of the
gradient contribution would be from the GAN objective).

We explore λ ∈ {0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.825, 1} to evaluate
our hypothesis. We compute the validity, uniqueness, and novelty scores as
well as all chemical rewards to show differences between the optimized one
and the others. We run a validation every 5 epochs as an average from 1k
samples.
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Results From the experimental results in Table 5.6, it emerges that our
hypotheses were correct and that λ regulates the bias between WGAN and
RL in the generative process. In particular, we observe the positive and
negative correlations, as previously hypothesized, between λ, rewards, and
uniqueness values.

The negative correlation between λ and the rewards is clear since lower
the λ value is, higher the currently optimized reward is. Indeed, the best
results for all rewards are when λ = 0. As we also reported in Section 5.3,
here we observe a trend towards very high validity score as well due to the
implicit optimization of valid compounds.

We observe that when we optimize either the SAS or the logP, the other
one increases as well. This unexpected behavior can be explained because it
might be that more soluble compounds are also easily synthesizable and vice
versa. We can also clearly notice the positive correlation between λ and the
uniqueness score. Indeed, the latter tend to be very low for λ → 0 showing
that as much as the RL is higher than the GAN loss, the model tends to do
not match the data distribution anymore.

For each reward, we also plot its evolution during training with different
λ values in Figure 5.4. From these plots, it is even more clear how λ affect
scores. For the first part of the training (pre-training), all scores are stable
and around the average of the data distribution. Depending on the value of
λ, when we introduce the RL loss, the values of these scores rise according.
In particular, for high value, the bias towards metrics is none or small, and
the scores tend to be steadily around the same value. Conversely, for low
values, the rewards immediately rise.

5.6 Overall analysis

In this section, we do not explore new settings, but we instead do an overall
analysis of our models as well as making a comparison of our best ones against
works similar to ours. We compare with both variational and adversarial
approaches. Additionally, we analyze the distribution of the SAS to show
how much RL bias the generative process. We also present the top four
molecules by rewards from our models, discussing their properties and the
differences between the ones generated by our VAEs or our WGANs.

5.6.1 Comparison with other VAE-based works

We compare our models against recent likelihood-based methods that utilize
variational approaches as well. We report a comparison with CharacterVAE
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Method validity uniqueness novelty logP SAS QED

λ = 0.0 (full RL) 100.00 2.40 100.00 0.68 0.73 0.42
λ = 0.125 99.90 2.90 99.80 0.65 0.65 0.49
λ = 0.25 100.00 3.30 99.90 0.67 0.64 0.47
λ = 0.375 99.60 4.72 99.40 0.65 0.47 0.50
λ = 0.5 99.70 12.84 96.09 0.66 0.55 0.48
λ = 0.625 97.10 45.42 90.11 0.47 0.34 0.50
λ = 0.75 94.50 57.35 75.03 0.43 0.34 0.49
λ = 0.875 86.50 74.10 53.29 0.36 0.32 0.50
λ = 1.0 (no RL) 90.10 63.91 62.42 0.30 0.28 0.50

(a) Optimizing the octanol-water partition coefficient (logP).

Method validity uniqueness novelty logP SAS QED

λ = 0.0 (full RL) 100.00 1.30 100.00 0.51 0.99 0.46
λ = 0.125 100.00 1.80 100.00 0.49 0.99 0.45
λ = 0.25 100.00 1.10 100.00 0.50 0.98 0.46
λ = 0.375 100.00 3.50 99.90 0.50 0.98 0.44
λ = 0.5 99.90 12.61 95.70 0.49 0.92 0.47
λ = 0.625 98.10 25.28 89.50 0.42 0.82 0.50
λ = 0.75 95.90 38.79 81.75 0.37 0.68 0.47
λ = 0.875 88.30 55.15 75.08 0.35 0.53 0.50
λ = 1.0 (no RL) 90.10 63.91 62.42 0.30 0.28 0.50

(b) Optimizing the synthetic accessibility score (SAS).

Method validity uniqueness novelty logP SAS QED

λ = 0.0 (full RL) 100.00 3.16 100.00 0.47 0.53 0.61
λ = 0.125 100.00 7.21 100.00 0.37 0.47 0.61
λ = 0.25 99.80 10.16 100.00 0.48 0.58 0.61
λ = 0.375 99.90 11.11 99.00 0.42 0.55 0.60
λ = 0.5 99.40 31.29 94.67 0.37 0.46 0.56
λ = 0.625 97.20 49.69 88.79 0.32 0.33 0.51
λ = 0.75 93.70 64.35 83.03 0.33 0.33 0.51
λ = 0.875 89.40 69.69 56.49 0.35 0.31 0.50
λ = 1.0 (no RL) 90.10 63.91 62.42 0.30 0.28 0.50

(c) Optimizing the quantitative estimate of druglikeness (QED).

Table 5.6: Trade-off between WGAN and RL objectives varying the λ using
feature matching WGAN with d = 32, direct decoder, and Gumbel noise.
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(c) Optimizing the quantitative estimate of druglikeness (QED).

Figure 5.4: Evolution of metrics during training with different λ values. For
this plot, we used feature matching WGAN with d = 32, direct decoder, and
Gumbel noise. The dashed line indicates from when we start introducing the
RL loss. Notice that pre-training is the same for every model.

(Gómez-Bombarelli et al., 2016), GrammarVAE (Kusner et al., 2017), and
GraphVAE (Simonovsky and Komodakis, 2018). In chapter 4, we presented
a very short overview of these works. For this evaluation, we use our best
VAE setting, selected from previous experiments, and a VAE trained with
RL to optimize validity and novelty. Similarly, we also use our best WGAN
setting, selected from previous experiments, and a WGAN trained with RL
to optimize validity and novelty as well. We then selected a VAE with d = 8,
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Method validity uniqueness novelty

CharacterVAE 10.3 67.5 90.0
GrammarVAE 60.2 9.3 80.9
GraphVAE 55.7 76.0 61.6
GraphVAE/imp 56.2 42.0 75.8
GraphVAE NoGM 81.0 24.1 61.0

Our VAE 61.5 97.6 69.1
Our VAE with RL 89.1 11.1 92.3
Our WGAN 89.2 26.5 55.7
Our WGAN with RL 99.6 14.5 97.7

Table 5.7: Comparison of our best models against recent variational ap-
proaches for molecular generation. Baseline results are taken from Si-
monovsky and Komodakis (2018).

and a direct decoding, feature matching WGAN with d = 32, direct decoding,
λ = 0, and Gumbel noise. The final evaluation scores are taken from an
average of 10k random samples. The number of samples differs from previous
experiments to be the same as baselines in Simonovsky and Komodakis (2018)
which we report results from.

Results are presented in Table 5.7. It emerges that training without
optimizing any metric except validity and novelty results in a model with
a higher uniqueness score compared to the ones in previous experiments.
Although the uniqueness scores of our models are slightly higher compared
to GrammarVAE, the other baselines are superior in terms of this score. Even
if we do not consider our models to be collapsed, such a low score confirms
our hypothesis that they are prone to collapsing modes. On the other hand,
we observe significantly higher validity scores compared to the VAE-based
baselines.

Notice that, differently from our combined approach with RL, standard
VAEs optimize the evidence lower bound (ELBO), and therefore, there is
no explicit nor implicit optimization of outputs validity. Moreover, since a
part of the ELBO maximizes reconstruction of the observations, the novelty
in the sampling process is not expected to be high since it is not optimized
directly. However, in all reported methods novelty is > 60% and, in the case
of CharacterVAE, 90%. Though CharacterVAE can achieve a high novelty
score, it underperforms in terms of validity. Our models, on the other hand,
achieve both high validity and novelty scores outperforming all baselines.
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5.6.2 Comparison with a GAN-based work

Here, we compare our work against Objective-Reinforced Generative Adver-
sarial Networks (ORGAN) by Guimaraes et al. (2017) since it is the closest
related work to ours. Their model relies on SeqGAN (Yu et al., 2017) to
adversarially learn to output sequences while optimizing towards chemical
metrics with REINFORCE (Williams, 1992). The main differences from our
approach are that they model molecules using SMILES sequences instead of
graphs, and their RL component uses REINFORCE while we use DDPG.

We compare to them using two of our best models combined with re-
inforcement learning, namely: a VAE (d = 8, direct decoding, and Gumbel
noise), and a feature matching WGAN (d = 32, direct decoding, λ = 0 and
Gumbel noise). We performed model selection using previous experiments
picking the best performing models (selecting λ), according to the optimized
reward. We also choose models with a uniqueness score of at least 10% to
prevent an unfair comparison with collapsed ones.

Results for ORGAN are taken from Guimaraes et al. (2017) (Table 1).
We report average scores for 6400 sampled compounds to match their setting.
Additionally, we re-ran ORGAN experiments to report execution time, since
it is not provided in the original work, training all models on same machine1.
Guimaraes et al. (2017) reported three model variants, ORGAN, that uses
a standard GAN with RL, OR(W)GAN, that uses WGAN with RL, and
Naive RL that uses reinforcement learning only. Notice that these variations
are applied after pre-training. They trained on a 5k subset of QM9 since
their model is quite computationally expensive. They employed pre-training
using maximum likelihood (MLE) for 250 epochs, and then they further
train for 100. Differently from us, they use dropout (Srivastava et al., 2014)
with a rate of 0.75 to prevent overfitting and to add stochasticity to their
models. Following their work, we report three settings where optimize the
same objectives using RL. For each of them, we train both our models using
the same 5k subset from ORGAN as well as on the entire dataset. We also
trained and pre-train for the same amounts of epochs as they did.

In Table 5.8, we show the comparison with ORGAN. From the experi-
mental results, we mainly observe that our models i) require much less time
to do the same amount of epochs, ii) perform poorly when trained on the
5k subset, and iii) outperform ORGAN in two out of three settings when
trained on the entire dataset.

Indeed, in terms of training time, our models outperform ORGAN by a
large margin (training at least ≈45 times faster). We think that the main
reasons for the speedup are that we do not rely on sequential generation nor

1Intel Xeon CPU E5-2640 v3 @ 2.60GHz and Nvidia GeForce GTX Titan X (Pascal)
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discrimination and that we do not evaluate rewards at every iteration (which
is a bottleneck since it has to run on CPU by an external software). OR-
GAN relies on an RNN that outputs long sequences of SMILES characters,
and these sequences receive rewards with a roll-out operation. This proce-
dure cannot run in parallel, and it is expensive. Besides, both ORGAN and
our models have a comparable number of parameters, with the latter being
approximately 20% larger, so we do not consider this factor as a source of
additional computational complexity. Computing molecular scores by the
external software is a bottleneck to the learning procedure. This is done by
both algorithms bu ours avoids evaluating rewards at each iteration.

For those reasons, we believe that our models that directly predict molec-
ular graphs are superior in term of resources needed to train them. Indeed,
we can train on the entire QM9 dataset (20 times larger than the subset) and
still train in half of the time. However, differently, from ORGAN, it seems
that our model is incapable of learning without a large dataset. In fact, our
approaches outperform ORGAN in optimizing the QED and the SAS, but
not the logP, only when we train on the full dataset.

When we do worse, we hypothesize that direct decoding does learn to
generalize enough to output new highly scored molecules. When we do better,
we think it is mainly due to two factors: i) it should be easier to optimize
a molecular graph predicted as a single sample than to optimize an RNN
model, and ii) DDPG instead of REINFORCE provides a better gradient,
and it improves the sampling procedure towards metrics.

5.6.3 Best samples

In Figure 5.5 and 5.6 we show some among the highest scoring samples
(depending on the optimized reward) from our best VAE and WGAN models
respectively. Both models are the one selected above as the best ones and
optimized with reinforcement learning. Notice that values are not ∈ [0, 1]
since we report the actual chemical scores and not the normalized one.

We observe that both the VAE and the WGAN models converge to dif-
ferent best scoring molecules. However, these molecules have similar scores
for the SAS and the logP models. We observe that the QED VAE is more
capable of learning to generate molecule with high scores. This is probably
due to the pre-training since the VAE decoder might have memorized part of
the training set, among which there are high score molecules, and later used
that to output molecules with desirable scores. Moreover, we hypotheses
that the QED is in general harder to optimize compared to other scores.

We also noticed a recurrent pattern in the molecular structure of these
best scoring compounds. For instance, when optimizing the QED, our VAE
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Method validity diversity QED SAS logP time

ORGAN 88.2 0.55 0.52 0.32 0.35 9.6*
OR(W)GAN 85.0 0.95 0.60 0.54 0.47 10.1*
Naive RL 97.1 0.80 0.57 0.53 0.50 9.4*

Our VAE 88.8 0.97 0.54 0.60 0.63 0.13
Our VAE (full QM9) 92.9 0.84 0.60 0.48 0.56 3.2
Our WGAN 99.7 0.66 0.55 0.48 0.45 0.21
Our WGAN (full QM9) 100.0 0.96 0.61 0.54 0.47 4.1

(a) Optimizing the quantitative estimate of druglikeness (QED).

Method validity diversity QED SAS logP time

ORGAN 96.5 0.92 0.51 0.83 0.45 8.7*
OR(W)GAN 97.6 1.00 0.20 0.75 0.84 9.6*
Naive RL 97.7 0.96 0.52 0.83 0.46 10.6*

Our VAE 89.6 0.99 0.49 0.71 0.49 0.09
Our VAE (full QM9) 94.0 1.00 0.51 0.86 0.46 2.2
Our WGAN 100.0 0.89 0.51 0.70 0.63 0.15
Our WGAN (full QM9) 99.8 0.97 0.47 0.92 0.48 3.3

(b) Optimizing the synthetic accessibility score (SAS).

Method validity diversity QED SAS logP time

ORGAN 94.7 0.76 0.50 0.63 0.55 8.7*
OR(W)GAN 94.1 0.90 0.42 0.66 0.54 9.2*
Naive RL 92.7 0.75 0.49 0.70 0.78 10.6*

Our VAE 87.9 0.98 0.61 0.49 0.75 0.09
Our VAE (full QM9) 95.2 0.98 0.38 0.86 0.66 2.1
Our WGAN 100.0 0.72 0.51 0.71 0.57 0.13
Our WGAN (full QM9) 99.8 0.93 0.49 0.59 0.67 3.1

(c) Optimizing the octanol-water partition coefficient (logP).

Table 5.8: Comparison of our WGAN and VAE models against a similar work
to ours: ORGAN (Guimaraes et al., 2017). For each setting we select our
best model based on the score we are optimizing for as well as a uniqueness
score of at least 10%. If not indicated, models are optimized on a 5k subset
of QM9. Time is reported in hours.
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learns that a ring with 5 atoms and a small tail has one of the highest rewards
in the search space explored by our model. Indeed, all top four molecules
share this structure with small variations. We observe this trend in the other
settings as well.

5.6.4 Score distributions

In Figure 5.7 we show a kernel density estimation of the distribution of the
synthetic accessibility score (SAS) from the dataset compared to the one
learned by two of our models. In particular, in Figure 5.7a, we use feature
matching WGAN with d = 32 and Gumbel noise, and in Figure 5.7b the
same model trained with λ = 0 to optimize the SAS. We estimate these
densities with 10k sample from the models as well as all samples from the
dataset to estimate the data one.

We first show how our normal WGAN is able to match the distribution
of this score. It is quite surprising that the two distributions almost perfectly
match. This indicates that the model learns to reproduce samples that re-
semble the one from the data. Secondly, we show how adding RL biases a lot
the generative process. In particular, the SAS has to be minimized, and the
resulting generative distribution of this score is shifted towards low values.
The mean has changed from 4.55 to 2.46. Notice that the std of the data
distribution is 1.22 so the change is substantial.
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(a) Optimizing the quantitative estimate of druglikeness (QED).

(b) Optimizing the synthetic accessibility score (SAS).

(c) Optimizing the octanol-water partition coefficient (logP).

Figure 5.5: Top four molecules with scores sampled from a VAE with d = 8,
λ = 0, direct decoder, and Gubmel noise. Notice that values are not ∈ [0, 1]
since we report the actual chemical scores and not the normalized one.

(a) Optimizing the quantitative estimate of druglikeness (QED).

(b) Optimizing the synthetic accessibility score (SAS).

(c) Optimizing the octanol-water partition coefficient (logP).

Figure 5.6: Top four molecules with scores sampled fromWGAN with d = 32,
λ = 0, direct decoder, and Gubmel noise. Notice that values are not ∈ [0, 1]
since we report the actual chemical scores and not the normalized one.
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(b) WGAN in combination with RL push the distribution of the synthetic accessi-
bility score to be as low as possible.

Figure 5.7: The synthetic accessibility score (SAS) distribution of dataset
and samples from either WGAN or WGAN with RL. We used d = 32 with
direct decoding. With RL we used λ = 0.



Chapter 6

Conclusion and Future work

In this chapter, we draw conclusions on this thesis, and we present some direc-
tions for future work. One of the central questions we try to give an answer
to is which is the best choice between likelihood-based and likelihood-free
methods for molecular graph generation. In particular, between variational
auto-encoders and generative adversarial networks. Although from experi-
mental results (see Section 5.6) it seems that our WGAN models outperform
our VAE ones, we prefer to do not make a strong statement. Indeed, where
graph WGANs present high validity scores and high chemical metrics, they
also exhibit low uniqueness, outputting a small set of diverse compounds.
On the other hand, graph VAEs do not suffer from such problem but they
cannot be optimized in combination with reinforcement learning.

6.1 Conclusion

6.1.1 Contributions

In the light of experimental results, we mainly identify contributions of this
thesis in showing both variational and adversarial deep generative models
for graphs capable of outputting high-quality molecules that optimize some
arbitrary non-differentiable reward function (e.g., the quantitative estimate
of druglikeness). From theoretical considerations and experimental results,
we want to highlight that i) our models can perform equally or better than
current state-of-the-art models for molecular generation, ii) we confirm the
superiority, in term of computational resources needed to train, of one-shot
graph-based prediction compared to the use of a recurrent SMILES predic-
tion, iii) the use of a deterministic policy gradient empirically proved to be
useful in biasing the generative process, and iv) we showed that likelihood-
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based models are challenging to be optimized in combination of RL.
In some settings, we show that our models outperform current state-of-

the-art approaches on similar tasks. Notice that we train them on a larger
dataset to achieve such performances resulting in longer training time. Be-
sides that, even with more extended training, our models showed to be even
faster in the case of comparison with ORGAN (Guimaraes et al., 2017).
Even though we do not compare the computational resources required to
train other SMILES-based generative models, based on empirical results, we
believe that the use of non-recurrent decoding is beneficial in these terms.
Indeed, a graph is predicted as a whole object and then training can be easier
parallelized compared to recurrent methods required in case of using SMILES
strings. One may decide to use SMILES without a recurrent generation, but
this would go against the trend of learning more general models that incor-
porate both syntax and semantic in structured languages. Besides that, we
leave the study of a more in-depth analysis of recurrent and non-recurrent
deep molecular graph generation for future work.

6.1.2 Limitations

We also individuate some limitations of our work. We show the performance
of all our models while outputting compounds of at most 9 atoms. When
using non-recurrent models, the prediction step and the graph convolution
networks layers dimensions scale quadratically in the number of nodes. More-
over, we evaluate the generation of small molecules for drug discovery, and
there is no guarantee that for larger input/output spaces, our models would
learn to generate high-quality molecules. These are limitations of the present
study, and we leave further investigations for future work.

We employ reinforcement learning using an off-policy deterministic policy
gradient method. We supported this choice from the earliest stages of our
work when we observed instability when training with a stochastic policy.
DDPG was observed to perform well in high-dimensional spaces in other
tasks, and we observe the same trend in our study. The graph predicted as
a whole action allowed the use of a much simpler form of RL that avoids
the roll-out of multiple re-scaled rewards through several steps. This aspect
might be beneficial in larger scale implementations since it has proved to be
very fast (even though, as previously mentioned, we showed results with a
relatively small molecular size). However, we miss an evaluation of different
RL techniques that might influence the outcomes of our experiments.

Although we show that reinforcement learning is needed to optimize to-
wards non-differentiable rewards, we also observe susceptibility to mode col-
lapse in most of our models. For instance, both the WGAN and the RL
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objective do not encourage the generation of diverse and non-unique outputs
whereby the model tends to be pulled towards a solution that only involves
little sample variability. The latter ultimately results in the generation of
only a handful of different molecules if we do not stop training early. The
employment of early stopping is a straightforward way to address the prob-
lem, but it does not avoid it. This issue is a specific limitation of our models
that might be addressed in future work.

Our likelihood-based models proved to be impossible to be optimized in
combination with reinforcement learning. After pre-training, as we explained
in Section 5.3, we are able to train with RL only since any other combina-
tion with the ELBO objective leads to collapsing models. Conversely, the
use of implicit models, such as generative adversarial networks, shows non-
collapsing behaviors. Moreover, it is possible to control the trade-off between
the WGAN and the RL objective through a parameter (we called it λ). We
argue that this difference occurs because the reconstruction error is incom-
patible with a reinforcement objective and that our variational approach
has to learn the node order when the adversarial approach does not have
to. Indeed, optimizing the generation of compounds with some properties is
opposite to optimizing reconstruction, since when one is optimal, the other
is not and vice versa. Moreover, during pre-training, our likelihood-based
methods have to learn a particular order of nodes in the reconstruction. The
latter is due to the ELBO term that forces the model to output the same
sequence of the nodes. Trying to make the ELBO permutation invariant
would require matching algorithms or integrating (summing) over all permu-
tations. In general, finding the optimal match corresponds to solving graph
isomorphism with is a well-known to be not solvable in polynomial time (i.e.,
usually exponentially complex in the number of nodes). However, a polyno-
mial time algorithm is known for planar graphs with maximum vertex degree
(Pemmaraju and Skiena, 2003) which in the case of molecular graphs. We
will leave the study of more sophisticated ways to compute the likelihood for
future work.

6.2 Future work

Except for some points discussed above, we identify three principal direc-
tions for future work: i) the employment of more sophisticated techniques
for generative processes to avoid mode collapse, ii) the use of recent varia-
tional/adversarial combinations, and iii) straighten experimental results on
larger dataset and more realistic reward functions (appropriately designed to
incentive the match with a biological target).
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As we previously discussed, mode collapse is an undesired behavior that
emerges from many of our models. A promising area for future research
would be investigating more in-depth the nature of this issue and applying
specific techniques to address it. For instance, works such as Srivastava et al.
(2017) have been proposed to reduce mode collapse in GANs.

On a similar line, (Dumoulin et al., 2017; Mescheder et al., 2017; Rosca
et al., 2017) combine variational approaches with adversarial learning. These
approaches may address some of the issues of our models. In particular, some
of them i) train an encoder function (very useful) within an implicit model, ii)
might permit the training of semi-variational models that does not collapse
when trained in combination with RL (i.e., λ > 0), and iii) might reduce
mode collapse as we state above.

It is well-known that the use of a larger dataset is beneficial to deep learn-
ing models. As future work, we propose to train our models on ChEMBL
(Gaulton et al., 2011). It is a >3 million compounds dataset widely used
in chemistry and pharmaceutical sciences. ChEMBL mainly contains bioac-
tive molecules with drug-like properties. It contains much more variety and
molecular information than QM9. We think that the use of ChEMBL would
increase the performance of our models and the quality of the generated
molecules. Additionally, in future work, we should investigate the generation
of larger compounds.

Finally, within this work, we aimed to propose and show generative mod-
els for small molecules optimized towards simple non-differentiable objectives
(e.g., the synthetic accessibility score). As future work, we would propose
to explore more sophisticated rewards such as scoring functions to match
particular biological targets. These scoring functions are commonly used in
drug discovery research, but they are built ad hoc depending on the purpose
of the drug (e.g., chemotherapy for a particular organ).
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Appendix A

Plots

Figure A.1: Plot of original samples and respectively reconstructions. For
this plot we used a VAE with d = 32 and recurrent prediction model. Notice
that most of the reconstructions do not perfectly match the original samples
but almost all atoms and bonds are predicted correctly.
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Figure A.2: Plot of the latent space around the origin. For this plot we used
a VAE with d = 2 and recurrent prediction model. We take samples using
a symmetric grid 1 × 1 centered at the origin of the R2 space resulting in
plotting the interval [−0.5, 0.5] along the x axis and [−0.5, 0.5] along the y
axis. Notice that close points map to similar compounds.
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Figure A.3: Plot of the latent space around the origin. For this plot we used
a WGAN with d = 2 and direct prediction model. We take samples using
a symmetric grid 4 × 4 centered at the origin of the R2 space resulting in
plotting the interval [−2, 2] along the x axis and [−2, 2] along the y axis.
Notice that close points map to similar compounds.



88 APPENDIX A. PLOTS



Appendix B

Derivations

B.1 Evidence Lower Bound

log p(x)
∗
= Eq(z|x) [log p(x)]

=

∫
q(z|x) log p(x)dz

=

∫
q(z|x) log

p(x|z)p(z)

p(z|x)
dz

∗∗
=

∫
q(z|x) log p(x|z)

p(z)

q(z|x)

q(z|x)

p(z|x)
dz

= Eq(z|x)[log p(x|z)] + Eq(z|x)
[
log

p(z)

q(z|x)

]
+ Eq(z|x)

[
log

q(z|x)

p(z|x)

]
= Eq(z|x)[log p(x|z)]−DKL [ q(z|x) ‖ p(z) ] +DKL [ q(z|x) ‖ p(z|x) ]
∗∗∗
≥ Eq(z|x)[log p(x|z)]−DKL [ q(z|x) ‖ p(z) ]

* expectation with respect to a distribution that does not influence log p(x)
** multiplication and division by the proposal distribution q(z|x), notice that
they have to share the same support
*** holds since DKL [ p ‖ q ] ≥ 0 ∀p, q
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B.2 Importance sampling

log p(x) = log

∫
p(x, z)dz

= log

∫
p(x|z)p(z)dz

∗
= log

∫
p(x|z)

p(z)

q(z|x)
q(z|x)dz

= logE q(z|x)

[
p(x|z)

p(z)

q(z|x)

]
∗∗
≥ E q(z|x)

[
log p(x|z)

p(z)

q(z|x)

]
∗∗∗
≈ log

1

N

N∑
i=1

p(x|z)
p(z)

q(z|x)

∣∣∣∣∣
z∼q(z|x)

* multiplication and division by the proposal distribution q(z|x), notice that
they have to share the same support
** Jensen’s inequality
*** Monte Carlo sampling



Appendix C

Algorithms

C.1 Deep Deterministic Policy Gradient

Algorithm C.1 Deep Deterministic Policy Gradient algorithm1

Randomly initialize state-action network Qµ
ψ(s, a) and policy µθ(s) with

weights ψ and θ. Initialize target networks Qµ
ψ′ and µθ′ with weights ψ′ ←

ψ, θ′ ← θ, and empty replay buffer R
for episode = 1, M do
Initialize a random process ε for action exploration
Receive initial observation state s1
for t = 1, T do
Select action at = µθ(st) + εt according to the current policy and
exploration noise
Execute action at and observe reward rt and observe new state st+1

Store transition (st, at, rt, st+1) in R
Sample a random minibatch of N transitions (si, ai, ri, si+1) from R
Set yi = ri + γQµ

ψ′(si+1, ai+1)
∣∣
µθ′ (si+1)

Update ψ by minimizing the loss: L = 1
N

∑N
i=1(Qψ(si, ai)− yi)2

Update θ using the sampled policy gradient:

∇θJ(µθ) ≈
1

N

N∑
i=1

∇θµθ(si) ∇aQ
µ
ψ(si, ai)

∣∣
ai=µθ(si)

Update the target networks: ψ′ ← τψ+(1−τ)ψ′ and θ′ ← τθ+(1−τ)θ′

end for
end for

1from Lillicrap et al. (2016) with modified notation

91



92 APPENDIX C. ALGORITHMS



Acronyms

AE auto-encoder.

CNN convolutional neural network.

ELBO evidence lower bound.

GAN generative adversarial network.

GCN graph convolution network.

logP octanol-water partition coefficient.

NN meural network.

QED quantitative estimate of druglikeness.

R-GCN relational graph convolution network.

RL reinforcement learning.

SAS synthetic accessibility score.

SGD stochastic gradient descent.

VAE variational auto-encoder.

WGAN Wasserstein GAN.

WGAN-GP WGAN with gradient penalty.

93



94 Acronyms



Bibliography

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein generative
adversarial networks. In International Conference on Machine Learning,
pages 214–223.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi,
V., Malinowski, M., Tacchetti, A., Raposo, D., Santoro, A., Faulkner,
R., et al. (2018). Relational inductive biases, deep learning, and graph
networks. arXiv preprint arXiv:1806.01261.

Bellman, R. (2013). Dynamic programming. Courier Corporation.

Bickerton, G. R., Paolini, G. V., Besnard, J., Muresan, S., and Hopkins,
A. L. (2012). Quantifying the chemical beauty of drugs. Nature chemistry,
4(2):90.

Borhani, D. W. and Shaw, D. E. (2012). The future of molecular dynamics
simulations in drug discovery. Journal of computer-aided molecular design,
26(1):15–26.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. (2014). Spectral networks
and locally connected networks on graphs. International Conference on
Learning Representations.

Burda, Y., Grosse, R., and Salakhutdinov, R. (2016). Importance weighted
autoencoders. International Conference on Learning Representations.

Chung, F. R. (1997). Spectral graph theory. American Mathematical Soc.

Comer, J. and Tam, K. (2001). Lipophilicity profiles: theory and measure-
ment. Wiley-VCH: Zürich, Switzerland.

Dai, H., Tian, Y., Dai, B., Skiena, S., and Song, L. (2018). Syntax-directed
variational autoencoder for molecule generation. In International Confer-
ence on Machine Learning.

95



96 BIBLIOGRAPHY

Davidson, T. R., Falorsi, L., De Cao, N., Kipf, T., and Tomczak, J. M. (2018).
Hyperspherical variational auto-encoders. In Conference on Uncertainty
in Artificial Intelligence.

De Cao, N. and Kipf, T. (2018). MolGAN: An implicit generative model for
small molecular graphs. ICML 2018 workshop on Theoretical Foundations
and Applications of Deep Generative Models.

Defferrard, M., Bresson, X., and Vandergheynst, P. (2016). Convolutional
neural networks on graphs with fast localized spectral filtering. In Advances
in Neural Information Processing Systems, pages 3844–3852.

Degris, T., White, M., and Sutton, R. S. (2012). Linear off-policy actor-critic.
In In International Conference on Machine Learning. Citeseer.

Dumoulin, V., Belghazi, I., Poole, B., Mastropietro, O., Lamb, A., Arjovsky,
M., and Courville, A. (2017). Adversarially learned inference. International
Conference on Learning Representations.

Ertl, P. and Schuffenhauer, A. (2009). Estimation of synthetic accessibility
score of drug-like molecules based on molecular complexity and fragment
contributions. Journal of cheminformatics, 1(1):8.

Gaulton, A., Bellis, L. J., Bento, A. P., Chambers, J., Davies, M., Hersey, A.,
Light, Y., McGlinchey, S., Michalovich, D., Al-Lazikani, B., et al. (2011).
ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic
acids research, 40(D1):D1100–D1107.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. (2017).
Neural message passing for quantum chemistry. International Conference
on Machine Learning.

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D., Hernández-Lobato, J. M.,
Sánchez-Lengeling, B., Sheberla, D., Aguilera-Iparraguirre, J., Hirzel,
T. D., Adams, R. P., and Aspuru-Guzik, A. (2016). Automatic chemical
design using a data-driven continuous representation of molecules. ACS
Central Science, 4(2):268–276.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial
nets. In Advances in neural information processing systems, pages 2672–
2680.



BIBLIOGRAPHY 97

Grathwohl, W., Choi, D., Wu, Y. o. U. i. A. I., Roeder, G., and Duvenaud,
D. (2018). Backpropagation through the void: Optimizing control variates
for black-box gradient estimation. International Conference on Learning
Representations.

Grover, A., Zweig, A., and Ermon, S. (2017). Graphite: Iterative genera-
tive modeling of graphs. In Conference on Neural Information Processing
Systems Bayesian Deep Learning Workshop.

Guimaraes, G. L., Sanchez-Lengeling, B., Farias, P. L. C., and Aspuru-Guzik,
A. (2017). Objective-reinforced generative adversarial networks (ORGAN)
for sequence generation models. arXiv preprint arXiv:1705.10843.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. C.
(2017). Improved training of wasserstein gans. In Advances in Neural
Information Processing Systems, pages 5769–5779.

Gumbel, E. J. (1954). Statistical theory of extreme valuse and some practical
applications. Nat. Bur. Standards Appl. Math. Ser. 33.

Hammond, D. K., Vandergheynst, P., and Gribonval, R. (2011). Wavelets on
graphs via spectral graph theory. Applied and Computational Harmonic
Analysis, 30(2):129–150.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality
of data with neural networks. science, 313(5786):504–507.

Hjelm, D., Jacob, A. P., Che, T., Trischler, A., Cho, K., and Bengio, Y.
(2018). Boundary-seeking generative adversarial networks. International
Conference on Learning Representations.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9(8):1735–1780.

Jang, E., Gu, S., and Poole, B. (2017). Categorical reparameterization with
gumbel-softmax. International Conference on Learning Representations.

Jin, W., Barzilay, R., and Jaakkola, T. (2018). Junction tree vari-
ational autoencoder for molecular graph generation. arXiv preprint
arXiv:1802.04364.

Johnson, D. D. (2017). Learning graphical state transitions. International
Conference on Learning Representations.



98 BIBLIOGRAPHY

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic opti-
mization. Proceedings of the 3rd International Conference on Learning
Representations (International Conference on Learning Representations).

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes.
International Conference on Learning Representations.

Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and Zemel, R. (2018). Neural
relational inference for interacting systems. International Conference on
Machine Learning.

Kipf, T. N. and Welling, M. (2016). Variational graph auto-encoders. In Con-
ference on Neural Information Processing Systems Bayesian Deep Learning
Workshop.

Kipf, T. N. and Welling, M. (2017). Semi-supervised classification with graph
convolutional networks. International Conference on Learning Represen-
tations.

Klebe, G. (2000). Recent developments in structure-based drug design. Jour-
nal of Molecular Medicine, 78(5):269–281.

Kullback, S. and Leibler, R. A. (1951). On information and sufficiency. The
annals of mathematical statistics, 22(1):79–86.

Kusner, M. J., Paige, B., and Hernández-Lobato, J. M. (2017). Grammar
variational autoencoder. In International Conference on Machine Learn-
ing, pages 1945–1954.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature,
521(7553):436.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324.

Li, Y. (2017). Deep reinforcement learning: An overview. arXiv preprint
arXiv:1701.07274.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. (2016). Gated graph
sequence neural networks. International Conference on Learning Repre-
sentations.



BIBLIOGRAPHY 99

Li, Y., Vinyals, O., Dyer, C., Pascanu, R., and Battaglia, P. (2018a). Learn-
ing deep generative models of graphs. International Conference on Learn-
ing Representations.

Li, Y., Zhang, L., and Liu, Z. (2018b). Multi-objective de novo drug design
with conditional graph generative model. arXiv preprint arXiv:1801.07299.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver,
D., and Wierstra, D. (2016). Continuous control with deep reinforcement
learning. International Conference on Learning Representations.

Maddison, C. J., Mnih, A., and Teh, Y. W. (2017). The concrete distribu-
tion: A continuous relaxation of discrete random variables. International
Conference on Learning Representations.

Maddison, C. J., Tarlow, D., and Minka, T. (2014). A* sampling. In Advances
in Neural Information Processing Systems, pages 3086–3094.

Merz Jr, K. M., Ringe, D., and Reynolds, C. H. (2010). Drug design:
structure-and ligand-based approaches. Cambridge University Press.

Mescheder, L., Nowozin, S., and Geiger, A. (2017). Adversarial variational
bayes: Unifying variational autoencoders and generative adversarial net-
works. International Conference on Machine Learning.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., and Riedmiller, M. (2013). Playing atari with deep reinforcement
learning. Conference on Neural Information Processing Systems.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare,
M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al.
(2015). Human-level control through deep reinforcement learning. Nature,
518(7540):529.

Moon, P. and Spencer, D. E. (1961). The vector Helmholtz equation. In
Field Theory Handbook, pages 136–143. Springer.

Nowozin, S., Cseke, B., and Tomioka, R. (2016). f-gan: Training generative
neural samplers using variational divergence minimization. In Advances in
Neural Information Processing Systems, pages 271–279.

O’Searcoid, M. (2006). Metric spaces. Springer Science & Business Media.



100 BIBLIOGRAPHY

Pemmaraju, S. and Skiena, S. (2003). Computational Discrete Mathemat-
ics: Combinatorics and Graph Theory with Mathematica R©. Cambridge
university press.

Peters, J. and Schaal, S. (2008). Reinforcement learning of motor skills with
policy gradients. Neural networks, 21(4):682–697.

Radford, A., Metz, L., and Chintala, S. (2016). Unsupervised representation
learning with deep convolutional generative adversarial networks. Inter-
national Conference on Learning Representations.

Rainforth, T., Kosiorek, A. R., Le, T. A., Maddison, C. J., Igl, M., Wood,
F., and Teh, Y. W. (2018). Tighter variational bounds are not necessarily
better. International Conference on Machine Learning.

Ramakrishnan, R., Dral, P. O., Rupp, M., and Von Lilienfeld, O. A. (2014).
Quantum chemistry structures and properties of 134 kilo molecules. Sci-
entific data, 1:140022.

Rosca, M., Lakshminarayanan, B., Warde-Farley, D., and Mohamed, S.
(2017). Variational approaches for auto-encoding generative adversarial
networks. arXiv preprint arXiv:1706.04987.

Ruddigkeit, L., Van Deursen, R., Blum, L. C., and Reymond, J.-L. (2012).
Enumeration of 166 billion organic small molecules in the chemical uni-
verse database gdb-17. Journal of chemical information and modeling,
52(11):2864–2875.

Sakurada, M. and Yairi, T. (2014). Anomaly detection using autoencoders
with nonlinear dimensionality reduction. In Proceedings of the MLSDA
2014 2nd Workshop on Machine Learning for Sensory Data Analysis,
page 4. ACM.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., and
Chen, X. (2016). Improved techniques for training GANs. In Advances in
Neural Information Processing Systems, pages 2234–2242.

Samanta, B., De, A., Ganguly, N., and Gomez-Rodriguez, M. (2018). Design-
ing random graph models using variational autoencoders with applications
to chemical design. arXiv preprint arXiv:1802.05283.

Sangster, J. (1997). Octanol-water partition coefficients: fundamentals and
physical chemistry. John Wiley & Sons.



BIBLIOGRAPHY 101

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and Monfardini, G.
(2009). The graph neural network model. IEEE Transactions on Neural
Networks, 20(1):61–80.

Schlichtkrull, M., Kipf, T. N., Bloem, P., van den Berg, R., Titov, I., and
Welling, M. (2018). Modeling relational data with graph convolutional
networks. In European Semantic Web Conference, pages 593–607. Springer.

Segler, M. H., Preuss, M., and Waller, M. P. (2018). Planning chemical syn-
theses with deep neural networks and symbolic AI. Nature, 555(7698):604.

Shuman, D. I., Narang, S. K., Frossard, P., Ortega, A., and Vandergheynst,
P. (2013). The emerging field of signal processing on graphs: Extending
high-dimensional data analysis to networks and other irregular domains.
IEEE Signal Processing Magazine, 30(3):83–98.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller,
M. (2014). Deterministic policy gradient algorithms. In International
Conference on Machine Learning.

Simonovsky, M. and Komodakis, N. (2017). Dynamic edge-conditioned filters
in convolutional neural networks on graphs. In Conference on Computer
Vision and Pattern Recognition.

Simonovsky, M. and Komodakis, N. (2018). GraphVAE: Towards gen-
eration of small graphs using variational autoencoders. arXiv preprint
arXiv:1802.03480.

Srivastava, A., Valkoz, L., Russell, C., Gutmann, M. U., and Sutton, C.
(2017). VEEGAN: Reducing mode collapse in GANs using implicit vari-
ational learning. In Advances in Neural Information Processing Systems,
pages 3308–3318.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdi-
nov, R. (2014). Dropout: a simple way to prevent neural networks from
overfitting. The Journal of Machine Learning Research, 15(1):1929–1958.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An intro-
duction, volume 1. MIT press Cambridge.

Tucker, G., Mnih, A., Maddison, C. J., Lawson, J., and Sohl-Dickstein, J.
(2017). Rebar: Low-variance, unbiased gradient estimates for discrete
latent variable models. In Advances in Neural Information Processing Sys-
tems, pages 2624–2633.



102 BIBLIOGRAPHY

van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves,
A., Kalchbrenner, N., Senior, A., and Kavukcuoglu, K. (2015). Wavenet:
A generative model for raw audio. In 9th ISCA Speech Synthesis Workshop,
pages 125–125.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., and Ben-
gio, Y. (2018). Graph attention networks. International Conference on
Learning Representations.

Villani, C. (2008). Optimal transport: old and new, volume 338. Springer
Science & Business Media.

Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and
computing, 17(4):395–416.

Vondrick, C., Pirsiavash, H., and Torralba, A. (2016). Generating videos with
scene dynamics. In Advances In Neural Information Processing Systems,
pages 613–621.

Watkins, C. J. and Dayan, P. (1992). Q-learning. Machine learning, 8(3-
4):279–292.

Wei, X., Gong, B., Liu, Z., Lu, W., and Wang, L. (2018). Improving the
improved training of Wasserstein GANs: A consistency term and its dual
effect. International Conference on Learning Representations.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for
connectionist reinforcement learning. In Reinforcement Learning, pages
5–32. Springer.

You, J., Ying, R., Ren, X., Hamilton, W. L., and Leskovec, J. (2018).
GraphRNN: A deep generative model for graphs. In International Confer-
ence on Machine Learning.

Yu, L., Zhang, W., Wang, J., and Yu, Y. (2017). SeqGAN: Sequence genera-
tive adversarial nets with policy gradient. In Association for the Advance-
ment of Artificial Intelligence, pages 2852–2858.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R. R.,
and Smola, A. J. (2017). Deep sets. In Advances in Neural Information
Processing Systems, pages 3394–3404.


	Abstract
	Contents
	List of Figures
	List of Tables
	I Main
	Overview
	Motivation
	Contributions
	Organization

	Background
	Variational Auto-Encoders
	Generative Adversarial Networks
	Reinforcement Learning
	Graph Convolutions
	Spectral Graph Convolutions
	Fast Localized Spectral Filtering
	Graph Convolutional Networks


	Method
	Graph representation of molecules
	Vectorial representation of graphs
	Graph encoding
	Graph decoding

	Variational Auto-Encoder models
	Generative Adversarial models
	Reinforcement learning models
	Evaluation techniques
	Dataset
	Quantitative evaluation
	Qualitative evaluation


	Related work
	Experiments
	Shared setup
	Variational Auto-Encoders
	Additional features
	Dimensionality and decoding functions

	VAEs with reinforcement learning
	The effect of l
	Forwarding X and A

	Generative Adversarial Networks
	Feature matching and mini-batch discrimination
	Dimensionality and decoding functions

	GANs with reinforcement learning
	The effect of l

	Overall analysis
	Comparison with other VAE-based works
	Comparison with a GAN-based work
	Best samples
	Score distributions


	Conclusion and Future work
	Conclusion
	Contributions
	Limitations

	Future work


	II Appendix
	Plots
	Derivations
	Evidence Lower Bound
	Importance sampling

	Algorithms
	Deep Deterministic Policy Gradient

	Acronyms
	Bibliography


